Examples on slide pack 6, slide 13.

\[E[X] = \sum_{a=0}^{10} a P(X=a) = \sum_{a=0}^{10} a P(X=a) \]

\[= \sum_{a=0}^{10} a (\binom{10}{a} p^a (1-p)^{10-a}) = 1 \cdot (10) p^0 (1-p)^9 + 2 \binom{10}{2} p^2 (1-p)^8 + \ldots \]

Does this have a nice closed form? Yes, coming soon.

Example: Let \(X \) be the number of flips up to and including the first head when a coin with probability \(p \) of heads is flipped independently.

Geometric random variable:

\[P_X(1) = P(X=1) = p \]
\[P_X(2) = P(X=2) = (1-p)p \]
\[P_X(3) = P(X=3) = (1-p)^2 p \]
\[\ldots \]

\[E[X] = \sum_{i=1}^{\infty} i P_X(i) = \sum_{i=1}^{\infty} i (1-p)^{i-1} p = p \sum_{i=1}^{\infty} i (1-p)^{i-1} \]

Calculus:

\[\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}, \text{ if } \left| x \right| < 1 \]

Differentiate:

\[\sum_{i=0}^{\infty} i x^{i-1} = \frac{1}{(1-x)^2} \]

\(x = 1-p \):

\[E[X] = p \cdot \frac{1}{(1-(1-p))^2} = \frac{1}{p} \]

\(p = \frac{1}{2} \Rightarrow E[X] = 2 \]
\(p = \frac{1}{10} \Rightarrow E[X] = 10 \]
Linearity of Expectation

Defn: If \(X \) is a r.v., \(E[g(X)] = \sum_a g(a)P_X(a) \)

Theorem 1: For any constants \(a \) and \(b \),
\[
E[aX+b] = aE[X]+b.
\]

Proof:
\[
E[aX+b] = \sum_a (aX+b)P_X(a) = \sum_a aX(a)P_X(a) + \sum_a bP_X(a) = a\sum_a XP_X(a) + b\sum_a P_X(a) = aE[X]+b
\]

\(\sum_a P_X(a) = 1 \)

Ex: A casino charges $1 to play the following game. They flip a coin with probability \(\frac{1}{8} \) of heads until it comes up heads and they pay you \(12X \) for each flip. Let \(X \) be the number of flips. Do you expect to win or lose money?
\[
E[12X-100] = 12E[X]-100 = 12 \cdot \frac{1}{8} - 100 = -4.
\]

Theorem 2: Let \(X \) and \(Y \) be two random variables, possibly dependent. Then \(E[X+Y] = E[X]+E[Y] \).

Linearity is special. In general,
\[
E[XY] \neq E[X]E[Y], \quad E[X^2] \neq (E[X])^2, \quad E[\sqrt{X}] \neq \sqrt{E[X]}, \quad \text{etc.}
\]