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Last time, we stated and used the Chernoff-Hoeffding bound.
Suppose X1, . . . , Xn are independent random variables taking values
in between 0 and 1, and let X = X1 + X2 + . . . + Xn be their sum, and
E [X] = µ.

Theorem 1. Suppose 0 < δ, then

p(X ≥ (1 + δ)µ) ≤ e−
δ2µ
2+δ ,

and
p(X ≤ (1− δ)µ) ≤ e−

δ2µ
2 .

If X1, . . . , Xn do not lie in between 0
and 1, you can always scale them so
that they do, and then apply the bound.
Careful though—scaling the random
variables changes the value of µ as well!

You can combine both inequalities into one if you write it like this:

Theorem 2. Suppose 0 < δ, then

p(|X− µ| > δµ) ≤ 2e−
δ2µ
2+δ .

When δ ≤ 1, we have e−
δ2µ
2+δ ≤ e−

δ2µ
3 , which is easier to work with

sometimes.

Distributed Load Balancing

A common problem when handling a high traffic website is load
balancing. You have k servers dedicated to handling jobs, and you get
n� k jobs. How do you distribute the jobs?

Of course, you would like to distribute these jobs to the k servers
as evenly as possible, but this is not as simple as it seems. The n
jobs could be coming in a distributed fashion, so there is no single
computer that knows how many requests are out there. In addition,
servers can be going offline and coming online at different times to
account for maintenance.

A simple solution is to just assign the requests to servers com-
pletely randomly. If we do this, the expected load that each server
will see is n/k. What can we say about the maximum load experi-
enced by any one server?

Let X1, . . . , Xk denote the number of jobs assigned to each of the
servers. Then we see that each Xi is a binomial random variable,
since each job is assigned to server i with probability 1/k. Are X1, . . . , Xk independent?

Claim 3. If n > 9k ln k, then p(Xi > n/k + 3
√

n ln k/k) < 1/k3.
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To see the claim, we apply the Chernoff bound from Theorem 1

with δ = 3
√

k ln k/n < 1:

p(Xi > n/k + 3
√

n ln k/k) = p(Xi > n/k(1 + 3
√

k ln k/n))

≤ e−
(3
√

k ln k/n)2
3 ·n/k

= e−3 ln k = 1/k3.

For example, if we have a thousand servers and a million jobs, this
bound says that the probability that a single server sees more than
1000 + 3

√
1000 ln 1000 = 1249.38 jobs is at most one in a billion!

By the union bound, the probability that any single server sees
more than n/k + 3

√
n ln k/k jobs is at most k · 1/k3 = 1/k2. This is

still one in a million for the numbers we have picked.

Intuition for the Proof of the Chernoff-Hoeffding bound

The proof of the bound is conceptually similar to the proof of
Chebyshev’s inequality—we use Markov’s inequality applied to the
right function of X. We will not do the whole proof here, but let us
prove something weaker here. Consider the random variable eX .

We have

eX = eX1+X2+...+Xn = eX1 · eX2 · eX3 . . . eXn .

Since X1, X2, . . . , Xn are mutually independent, this means that

E

[
eX
]
= E

[
eX1 · · · eXn

]
= E

[
eX1
]

. . . E

[
eXn
]

.

Now suppose:

E

[
eX1
]
= c,

for some constant c. Then, by Markov’s inequality,

p(X > αn) = p(eX > eαn) ≤ E
[
eX]

eαn = cn/eαn,

which is exponentially small in n, when α > ln c. The actual proof of
the Chernoff-Hoeffding bound comes from using calculus to deter-
mine the right constant to use instead of e in the above argument.
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Moment Generating Functions

The outline of the proof we saw above naturally leads us to
an important concept in probability theory—moment generating func-
tions. Given a real valued random variable X, its moment generating
function is a function M : R→ R given by

M(t) = E

[
etX
]

.

This is a function that maps every number t to another number.
To explain the name, we first need to explain what a moment

is. The moments of X are the numbers E [X] , E
[
X2] , E

[
X3] , . . . .

These are important statistics of a distribution. We have already seen
that the first two moments determine the variance of X. The other
moments provide lots of other information about X.

Now, by linearity of expectation and the Taylor series for e, we
obtain:

M(t) = E

[
etX
]

= E

[
1 + tX + (tX)2/2 + (tX)3/3! + · · ·

]
= 1 + E [X] · t + E

[
X2
]
· t2/2 + E

[
X3
]
· t/3! + · · · .

And this means that the moment generating function determines all
the moments of X. Indeed, to compute the k’th moment of X, you
just need to take the k’th derivative of M(t) with respect to t, and
evaluate this at 0. For example, the 3’rd derivative of M(t) is

E

[
X3
]
+ E

[
X4
]
· t + E

[
X5
]
· t2/2 + · · · ,

so when t = 0, this is the same as E
[
X3].

Moreover, we have an important fact:

Theorem 4. If X, Y have the same moment generating function, then they
have the same cumulative distribution function.

In fact, this theorem is how the central limit theorem is proved.
You can show that no matter what distribution you start with, the
moment generating function of X1 + X2 + · · ·+ Xn converges to the
moment generating function for the normal distribution.

Example: Adding two Independent copies

Suppose X, Y are independent with moment generating functions
Mx(t), My(t). Then the moment generating function of X + Y is just
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Mx(t) ·My(t). This is because:

E

[
et(X+Y)

]
= E

[
etX+tY

]
= E

[
etXetY

]
= E

[
etX
]
·E
[
etY
]

since X, Y are independent

= Mx(t) ·My(t).

Example: Poisson

Suppose X is poisson with parameter λ. Then the moment generat-
ing function of X is

M(t) = E

[
etX
]

=
∞

∑
k=0

etke−λ(λ)k/k!

= e−λ
∞

∑
k=0

(etλ)k/k!

= e−λeλet

= eλ(et−1).

So, for example, if X is Poisson with parameter λ1 and Y is Pois-
son with parameter λ2, then X + Y has moment generating function
eλ1(et−1)eλ2(et−1) = e(λ1+λ2)(et−1). Since this is identical to the mo-
ment generating function of a Poisson with parameter λ1 + λ2, this
proves that X + Y has the same distribution as a Poisson with pa-
rameter λ1 + λ2, something you proved on your homework using the
binomial identity.
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