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Last time we defined the exponential random variable. This the time
of the first arrival in the Poisson process with parameter λ. Recall
that we computed its pdf to be

f (t) = λe−λt,

and its cdf to be
F(t) = 1− e−λt.

Let us compute the variance and expectation of the exponential
random variable. To compute the expectation, recall that the Poisson
process is the limit of binomial distributions. We can think of it as
n Bernoullis in each unit of time, each with parameter p, such that
pn = λ. Now, we have computed the expected number of throws
before we see the first success in the Bernoullis (this is the geometric
random variable). The expectation is 1/p. So, we should expect to
see the first arrival after 1/p = n/λ throws. This corresponds to 1/λ

units of time.
More formally, the expectation of the exponential random variable

is then (using integration by parts)

E [X] =

∞∫
0

tλe−λt dt

= −t · e−λt
∣∣∣∞
0
−

∞∫
0

(−e−λt) dt

= 0 + (−1/λ)e−λt
∣∣∣∞
0
= 1/λ.

Next, let us compute the variance. As before, we could calculate
this using the analogy to the binomial distribution. We computed the
variance of the geometric random variable in Lecture 15, it was 1−p

p2 ,

which is the same as 1−λ/n
(λ/n)2 = 1−λ/n

(λ/n)2 . This gives a standard deviation
of √

1− λ/n
(λ/n)2 =

n
λ
·
√

1− λ/n.

As n becomes larger, this converges to n/λ, or 1/λ units of time.
So, the variance is 1/λ2. Similarly, the variance can be calculated by



lecture 19: variance and expectation of the exponential distribution, and the normal

distribution 2

computing (using the product rule twice):

E

[
X2
]
=

∞∫
0

t2λe−λt dt

= −t2 · e−λt
∣∣∣∞
0
−

∞∫
0

(−2te−λt) dt

= 0 + (−2t/λ)e−λt
∣∣∣∞
0
−

∞∫
0

(−2/λ)e−λt dt

= 0 + (−2/λ2)e−λt
∣∣∣∞
0

= 2/λ2.

So, the variance is E
[
X2]−E [X]2 = 1/λ2, and the standard devia-

tion is 1/λ.

Fact 1 (Memorylessness). If X is distributed according to the exponential
distribution, then p(X > s + t|X > t) = p(X > s).

Proof.

p(X > s + t|X > t) =
p(X > s + t, X > t)

p(X > t)

=
p(X > s + t)

p(X > t)
=

e−λ(s+t)

e−λt = e−λs,

which is exactly the same as the probability that X > s.

In homework, you will prove the following fact:

Fact 2. If X and Y are independent Poisson’s with parameters λ1 and λ2,
then X + Y is a Poisson with parameter λ1 + λ2.

The most important distribution in the whole world

There is one distribution that is more important than all the
others. It seems to be the right model for all kinds of processes ob-
served in practice. It is called the normal distribution. The normal The central limit theorem, which we

discuss soon, provides a mathematical
explanation for why the normal dis-
tribution is so commonly found in the
wild.

distribution is sometimes referred to as the Gaussian distribution.
The pdf of the normal distribution is

f (x) =
1√
2πσ

· e−
(x−µ)2

2σ2 ,

where here µ and σ are parameters of the distribution. The formula
has been set up so that µ is the expected value, and σ is the standard
deviation of the normal.
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Figure 1: The pdf of the normal
distribution with µ = 0.

It is a little bit tricky to check that the pdf of the normal distribu-
tion is a valid pdf, namely that See https://en.wikipedia.org/wiki/

Gaussian_integral.
∞∫
−∞

f (x) =
∞∫
−∞

1√
2πσ

· e−
(x−µ)2

2σ2 = 1.

We do not do it here.
It is easy to see that µ is the expected value of the normal—the

pdf is symmetric around µ. The value of the pdf at µ + ε is equal to
its value at µ − ε, so the average value must be µ. To compute the
variance, we can first set µ = 0, which doesn’t change the variance.
Then we have:

E

[
X2
]
=

∞∫
−∞

x2 f (x) dx =
1√
2πσ

∞∫
−∞

x2 · e−
(x−µ)2

2σ2 dx.

The integral can be evaluated using integration by parts:

∞∫
−∞

(x) · (xe−
x2

2σ2 ) dx = x · (−σ2)e−
x2

2σ2 )
∣∣∣∞
−∞
−

∞∫
−∞

(−σ2)e−
x2

2σ2 dx

= σ2
∞∫
−∞

e−
x2

2σ2 dx. The first term is 0, since xe−x2/2σ2
goes

to 0 as x gets large.

https://en.wikipedia.org/wiki/Gaussian_integral
https://en.wikipedia.org/wiki/Gaussian_integral
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So, we conclude that

E

[
X2
]
=

1√
2πσ

∞∫
−∞

(x) · (xe−
x2

2σ2 ) dx

= σ2 · 1√
2πσ

∞∫
−∞

e−
x2

2σ2 dx

= σ2. since the second term is the area under
the pdf of the normal, which is 1.

Thus, the variance is (using E [X] = 0),

Var [X] = E

[
X2
]
= σ2 · 1√

2πσ

∞∫
−∞

e−
x2

2σ2 dx

= σ2,

since the integral of the pdf is 1.
If X is a normal with mean µ and standard deviation σ, then

aX + b is also normal, with mean µ + b and standard deviation aσ.
Unfortunately, the cdf of the normal distribution has no nice closed
form. However, it is not too hard to use programs to evaluate the cdf.

Theorem 3. Given any real-valued distribution with expectation µ and
standard deviation σ, suppose X1, X2, . . . , Xn are sampled independently
according to this distribution and

Yn =
X1 + X2 + . . . + Xn − nµ

σ
√

n
.

Then the cdf of Yn converges to the cdf of the standard normal, in the sense
that for every α,

lim
n→∞

p(Yn ≤ α) =
1√
2π

α∫
−∞

e−x2/2 dx.

Note that
α∫
−∞

e−x2/2 dx is just the cdf of the normal distribution

with mean 0 and standard deviation 1. So, the theorem asserts that
the cdf of the sum convergers to the cdf of the standard normal, after
we shift and scale it appropriately.


	The most important distribution in the whole world

