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We discuss the expectation of a real valued random variable.

Expectation

When a random variable takes a number as a value, it makes
sense to talk about the average value that it takes. The expected value
of a random variable is defined:

E [X] = ∑
x

p(X = x) · x. (1)

For example, let X be the roll of a 6-sided die. The expectation

E [X] =
1
6
· 1 + 1

6
· 2 + 1

6
· 3 + 1

6
· 4 + 1

6
· 5 + 1

6
· 6 =

21
6

= 3.5.

If X is the number of heads when we toss a coin n times, the ex-
pected value of X is

E [X] =
(n

0)

2n · 0 +
(n

1)

2n · 1 + . . . +
(n

n)

2n · n. (2)

E [X] gives the center of mass of the distribution of X. However,
there are many different distributions that can have the same expecta-
tion.

For example, let X, Y, Z be random variables such that

X =

1000 with probability 1/2,

−1000 with probability 1/2.

Y =

1 with probability n−1
n ,

−(n− 1) with probability 1
n .

Z =
{

0 with probability 1.

Then note that E [X] = E [Y] = E [Z] = 0, even though these
three variables have vastly different distributions. There are several
misconceptions that people have about expectations.
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• It is not necessarily true that a random variable will be close to
its expectation with high probability. For example, X as defined
above is never close to 0.

• It is not necessarily true that a random variable will be above its
expectation with probability about half and below with probability
half. Consider Y above.

Linearity of Expectation

The formula for expectation given in (1) is not always the
easiest way to calculate the expectation. Here are some observations
that can make it much easier to calculate the expectation.

The first extremely useful concept is the notion of linearity of
expectation.

Fact 1. If X and Y are real valued random variables in the same probability
space, then E [X + Y] = E [X] + E [Y].

Proof.

E [X + Y] = ∑
z

p(X + Y = z) · z

= ∑
x,y

p(X = x, Y = y) · (x + y)

= ∑
x,y

p(X = x, Y = y) · x + ∑
x,y

p(X = x, Y = y) · y.

Now we can express the first term

∑
x,y

p(X = x, Y = y) · x = ∑
x,y

p(X = x) · x · p(Y = y|X = x)

= ∑
x

p(X = x) · x
(

∑
y

p(Y = y|X = x)

)
= ∑

x
p(X = x) · x = E [X] .

Similarly, the second term is E [Y].

More generally, we have that for any real numbers α, β,

E [αX + βY] = α ·E [X] + β ·E [Y] .

The amazing thing is that linearity of expectation even works
when the random variables are dependent. This does not hold, for
example, with multiplication—in general E [X ·Y] 6= E [X] ·E [Y]. However, when X, Y are independent,

we do have E [X ·Y] = E [X] ·E [Y].
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Example: Expected Number of Heads

Suppose you toss a coin n times. Let X denote the total number of
heads. Define Xi by

Xi =

1 if the i’th toss gives heads,

0 otherwise.

Then we see that X = X1 + . . . + Xn. Moreover,

E [Xi] = (1/2)0 + (1/2)1 = 1/2.

So, we get

E [X] = E [X1] + E [X2] + . . . + E [Xn] = n/2.

Example: Birthday Paradox

There are 96 students enrolled in CSE312. Assuming that each of
them has a uniformly random and independent birthday, how many
pairs of students are expected to have the same birthday?

For i < j, let Xi,j be the random variable such that

Xi,j =

1 if i, j share a birthday

0 otherwise.

Then the number of pairs of students with the same birthday is just

E

[
∑i<j∈[96] Xi,j

]
= ∑i<j∈[96] E

[
Xi,j
]
, by linearity of expectation.

We have E
[
Xi,j
]
= 1

365 , so the expected number of pairs with the
same birthday is:

∑
i<j∈[96]

E
[
Xi,j
]
=

(96
2 )

365
= 12.49 . . .
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