
CSE 312

Foundations of Computing II
Lecture 9: Pairwise-Independent Hashing

Stefano Tessaro

tessaro@cs.washington.edu

1



This week – Applications + Random Variables 

• Today: Data structures!
– The power of pairwise-independence

• Wednesday: (Simple) Machine Learning
– Naïve Bayes Learning

– (Optional) Project

• Friday: Random Variables

2



Last time – Refresher

3

Definition. The events !",… ,!% are independent if for every & ≤
( and 1 ≤ *" < *, < ⋯ < *. ≤ (,

ℙ !01 ∩ !03 ∩ ⋯∩!04 = ℙ !01 ⋅ ℙ !03 ⋯ℙ !04 .



Last time – Refresher

4

Definition. The events !",… ,!% are pairwise-independent if for all 
distinct 8, * ∈ [(], 

ℙ !< ∩ !0 = ℙ !< ⋅ ℙ(!0).

Today: Application to CS of pairwise-independence!

Definition. The events !",… ,!% are independent if for every & ≤
( and 1 ≤ *" < *, < ⋯ < *. ≤ (,

ℙ !01 ∩ !03 ∩ ⋯∩!04 = ℙ !01 ⋅ ℙ !03 ⋯ℙ !04 .



Basic Problem

5

Problem: Store a subset ? of a large set @.

Example. @ = set of all US ZIP codes

? = set of ZIP codes of CSE 312 students

@ ≈ 42000

? ≈ 50

Two goals: 

1. Constant-time answering of queries “Is B ∈ ??”
2. Minimize storage requirements.

Imagine for simplicity @ = 1,… , D = [D]



Naïve Solution – Constant Time

6

Idea: Represent ? as an array E with D entries.

1 F G H I … J− L J
1 0 1 0 0 … 1 0

E 8 = N1 if 8 ∈ ?
0 if 8 ∉ ?

Membership test: To check 8 ∈ ? just check whether E 8 = 1.

Storage: Require storing D bits, even for small ?.

!"→ constant time!

#$

? = {1,3, … , D − 1}



Naïve Solution – Small Storage

7

Idea: Represent ? as a list with |?| entries.

? = {1,3, … , D − 1} 1 3 … K-1

Storage: Grows with |?| only !"

Membership test: Check 8 ∈ ? requires time linear in |?|
(Can be made logarithmic by using a tree) #$



Today – Hash Table

8

Idea: Represent ? as an array E with V ≪ D entries.

1 F G H I
1 D − 1 0 0 3

E X(8) = N8 if 8 ∈ ?
0 if 8 ∉ ?

? = {1,3, … , D − 1}

hash function X: K → [V]

1
2

3
4

5

K-1
K

1
2
3
4
5

Membership test: To check 8 ∈ ? just 
check whether E X(8) = 8.

Storage: V elements from 0 ∪ [D]

V = 5



Our Solution – Hash Table

9

E X(8) = N8 if 8 ∈ ?
0 if 8 ∉ ?

hash function X: K → [V]

1
2

3
4

5

K-1
K

1
2
3
4
5

Membership test: To check 8 ∈ ? just 
check whether E X(8) = 8.

Storage: V elements from 0 ∪ [D]

Challenge 1: Ensure X 8 ≠
X * for all 8, * ∈ ?

Challenge 2: Ensure
V ≈ |?|

We will show today V ≈ ? ,



Our Solution – Hash Table

10

hash function X: D → [V]

1
2

3
4

5

K-1
K

1
2
3
4
5

Membership test: To check 8 ∈ ? just 
check whether E X(8) = 8.

Challenge 1: Ensure X 8 ≠
X * for all 8, * ∈ ?

Impossible! Because V < D, for 
every X, we can always come up 
with a set ? where this is not true!  

(By the pigeonhole principle)

Solution: We will pick X
randomly and show it is good 
for ? with good probability 
(e.g., ≥ 1/2)



How to choose X? 

11

First idea: Pick X: D → [V] randomly from the set of all functions.

Fix set ? ⊆ [D]with ( elements. Wlog ? = {1,… , (}

Theorem. ℙ ∃8 ≠ *: X 8 = X(*) ≤ % %d"
,e

Set V = (, = ? , for probability < "
,

Note: This will not be a good idea in the end. Why? We need to 
store entire description of X! Let’s stick with it for now.



Proof – Random Hash

12

Ω = X X: D → [V]}

ℙ X =
1
Vg

h = X ∃8 ≠ *: X 8 = X(*)}

Claim. h = h",, ∪ h",i ∪ ⋯h%d",% = ⋃<k0 h<,0

“Proof”: h happens if and only if (X(1) = X(2) or X 1 = X(3)
or X 1 = X(4) or … or X ( − 1 = X(())

For every 8 < *: h<,0 = X X 8 = X(*)}



Proof – Random Hash

13

Claim. For all 8 < *, ℙ(h<,0) =
"
e

Proof:

ℙ h<,0 =m
n

ℙ(!< o ∩ !0 o )

Ω = X X: D → [V]}

ℙ X =
1
Vg

For every 8 < *: h<,0 = X X 8 = X(*)}

Let !<(o) = X X 8 = o} [i.e., we pick a function that maps 8 to o.]

Note that ℙ !<(o) = ℙ !0(o) = epq1

ep = "
e

ℙ !< o ∩!0 o = epq3

ep = "
e3 =

"
e
⋅ "
e

Independent!



Proof – Random Hash

14

Claim. For all 8 < *, ℙ(h<,0) =
"
e

Proof:

ℙ h<,0 =m
n

ℙ(!< o ∩ !0 o )

Ω = X X: D → [V]}

ℙ X =
1
Vg

For every 8 < *: h<,0 = X X 8 = X(*)}

Let !<(o) = X X 8 = o} [i.e., we pick a function that 8 maps to o.]

=m
n

ℙ !< o ⋅ ℙ(!0 o )

=m
n

1
V, = V×

1
V, =

1
V



Proof – Random Hash

15

h =s
<k0

h<,0 ℙ(h<,0) =
1
V

ℙ(h) = ℙ(⋃<k0 h<,0) ≤m
<k0

ℙ(h<,0) =m
<k0

1
V =

(
2

1
V
=
((( − 1)
2V

Theorem. ℙ ∃8 ≠ *: X 8 = X(*) ≤ % %d"
,e

Claim. For all 8 < *, ℙ(h<,0) = 1/V

Union bound: ℙ !" ∪⋯∪!% ≤ ℙ !" +⋯+ ℙ(!%)



Back to Data Structures

16

Need to store D elements from [V].   

Problem: Description of X: D → [V] needs to be stored along with 
the set ?.  

#$



17

Claim. For all 8 < *, ℙ(h<,0) = 1/V

Our proof did not need X to be picked at random from all 
functions …

ℙ h<,0 =m
n

ℙ(!< o ∩ !0 o ) =m
n

ℙ !< o ℙ(!0 o )

=m
n

1
V, = V×

1
V, =

1
V

This only requires pairwise independence of 
the !< o ’s



Pairwise-Independent Functions

18

Definition. A setu of functions D → [V] is pairwise independent if 
for all distinct 8 ≠ *, and all o, ov ∈ [V]

X ∈ u X 8 = o ∧ X * = ov} =
|u|
V,

Now: Pick X: D → [V] randomly from pairwise-independent u .

Theorem. ℙ ∃8 ≠ *: X 8 = X(*) ≤ % %d"
,e

Proof as before: Only one step different (next slide) 



Pairwise-Independent Functions

19

Definition. A setu of functions D → [V] is pairwise independent if 
for all distinct 8 ≠ *, and all o, ov ∈ [V]

X ∈ u X 8 = o ∧ X * = ov} =
|u|
V,

ℙ !< o ∩!0 o =
X ∈ u X 8 = o ∧ X * = ov}

|u|
=

1
V,

Let !<(o) = X ∈ u X 8 = o}

This is all we needed!



Pairwise-Independent Functions

Fact: The set of all functions D → [V] is pairwise 
independent
– Size Vg

20



Pairwise-Independent Functions

Fact (informal)*: There exists a pairwise-independent set u of 
functions D → [V] with size u = D,

21

• Described by two elements of D . 
• Idea*: B → EB + x mod D mod V i.e., function described by E,x in 
D . 

• Overall solution takes storing ? , + 2 elements from D ∪ {0} (i.e., 
array + description of a chosen good function)

*Some cheating here, as usually one gets an approximation of a pairwise independent 
hash function, where ℙ !< o ∩!0 o ≈ ℙ !< o ⋅ ℙ !0 o

Several other applications: Data structures, algorithms, cryptography, … 


