Lecture 9: Pairwise-Independent Hashing

Stefano Tessaro
tessaro@cs.washington.edu
This week – Applications + Random Variables

• **Today:** Data structures!
 – The power of pairwise-independence

• **Wednesday:** (Simple) Machine Learning
 – Naïve Bayes Learning
 – (Optional) Project

• **Friday:** Random Variables
Definition. The events $\mathcal{A}_1, \ldots, \mathcal{A}_n$ are **independent** if for every $k \leq n$ and $1 \leq j_1 < j_2 < \cdots < j_k \leq n$,

$$
\mathbb{P}(\mathcal{A}_{j_1} \cap \mathcal{A}_{j_2} \cap \cdots \cap \mathcal{A}_{j_k}) = \mathbb{P}(\mathcal{A}_{j_1}) \cdot \mathbb{P}(\mathcal{A}_{j_2}) \cdots \mathbb{P}(\mathcal{A}_{j_k}).
$$
Definition. The events $\mathcal{A}_1, \ldots, \mathcal{A}_n$ are **independent** if for every $k \leq n$ and $1 \leq j_1 < j_2 < \cdots < j_k \leq n$,

$$\mathbb{P}(\mathcal{A}_{j_1} \cap \mathcal{A}_{j_2} \cap \cdots \cap \mathcal{A}_{j_k}) = \mathbb{P}(\mathcal{A}_{j_1}) \cdot \mathbb{P}(\mathcal{A}_{j_2}) \cdots \mathbb{P}(\mathcal{A}_{j_k}).$$

Definition. The events $\mathcal{A}_1, \ldots, \mathcal{A}_n$ are **pairwise-independent** if for all distinct $i, j \in [n]$,

$$\mathbb{P}(\mathcal{A}_i \cap \mathcal{A}_j) = \mathbb{P}(\mathcal{A}_i) \cdot \mathbb{P}(\mathcal{A}_j).$$

Today: Application to CS of pairwise-independence!
Basic Problem

Problem: Store a subset S of a large set X.

Example. $X =$ set of all US ZIP codes
$S =$ set of ZIP codes of CSE 312 students

$|X| \approx 42000$
$|S| \approx 50$

Two goals:
1. **Constant-time** answering of queries “Is $x \in S$?”
2. **Minimize storage** requirements.

Imagine for simplicity $X = \{1, \ldots, K\} = [K]$
Naïve Solution – Constant Time

Idea: Represent S as an array a with K entries.

$$S = \{1, 3, ..., K − 1\}$$

Membership test: To check $i \in S$ just check whether $a[i] = 1$.

→ constant time! 😊😊

Storage: Require storing K bits, even for small S. 😞😔
Naïve Solution – Small Storage

Idea: Represent S as a list with $|S|$ entries.

$$S = \{1, 3, \ldots, K - 1\}$$

Storage: Grows with $|S|$ only

Membership test: Check $i \in S$ requires time linear in $|S|$.

(Can be made logarithmic by using a tree)
Today – Hash Table

Idea: Represent S as an array a with $M \ll K$ entries.

$S = \{1, 3, \ldots, K - 1\}$

Membership test: To check $i \in S$ just check whether $a[h(i)] = i$.

Storage: M elements from $\{0\} \cup [K]$

$$a[h(i)] = \begin{cases} i & \text{if } i \in S \\ 0 & \text{if } i \notin S \end{cases}$$
Our Solution

Challenge 1: Ensure $h(i) \neq h(j)$ for all $i, j \in S$

Membership test: To check $i \in S$ just check whether $a[h(i)] = i$.

Storage: M elements from $\{0\} \cup [K]$

Challenge 2: Ensure $M \approx |S|^2$

We will show today $M \approx |S|^2$
Our Solution

Challenge 1: Ensure $h(i) \neq h(j)$ for all $i, j \in S$

Membership test: To check $i \in S$ just check whether $a[h(i)] = i$.

Impossible! Because $M < K$, for every h, we can always come up with a set S where this is not true!

(By the pigeonhole principle)

Solution: We will pick h randomly and show it is good for S with good probability (e.g., $\geq 1/2$)

hash function $h: [K] \to [M]$
How to choose h?

Fix set $S \subseteq [K]$ with n elements. Wlog $S = \{1, \ldots, n\}$

First idea: Pick $h: [K] \to [M]$ randomly from the set of all functions.

Theorem. $\mathbb{P}(\exists i \neq j: h(i) = h(j)) \leq \frac{n(n-1)}{2M}$

Set $M = n^2 = |S|^2$ for probability $< \frac{1}{2}$

Note: This will not be a good idea in the end. Why? We need to store entire description of h! Let’s stick with it for now.
Proof – Random Hash

\[\Omega = \{ \mathbf{h} \mid \mathbf{h}: [K] \rightarrow [M] \} \]

\[\mathbb{P}(\mathbf{h}) = \frac{1}{M^K} \]

\[\mathcal{C} = \{ \mathbf{h} \mid \exists i \neq j: \mathbf{h}(i) = \mathbf{h}(j) \} \]

For every \(i < j \):

\[\mathcal{C}_{i,j} = \{ \mathbf{h} \mid \mathbf{h}(i) = \mathbf{h}(j) \} \]

Claim. \(\mathcal{C} = \mathcal{C}_{1,2} \cup \mathcal{C}_{1,3} \cup \cdots \mathcal{C}_{n-1,n} = \bigcup_{i<j} \mathcal{C}_{i,j} \)

“Proof”: \(\mathcal{C} \) happens if and only if (\(\mathbf{h}(1) = \mathbf{h}(2) \) or \(\mathbf{h}(1) = \mathbf{h}(3) \) or \(\mathbf{h}(1) = \mathbf{h}(4) \) or … or \(\mathbf{h}(n - 1) = \mathbf{h}(n) \))
Proof – Random Hash

\[\Omega = \{ h \mid h : [K] \rightarrow [M] \} \]
\[\mathbb{P}(h) = \frac{1}{M^K} \]

For every \(i < j \): \(C_{i,j} = \{ h \mid h(i) = h(j) \} \)

Claim. For all \(i < j \), \(\mathbb{P}(C_{i,j}) = \frac{1}{M} \)

Proof: Let \(\mathcal{A}_i(y) = \{ h \mid h(i) = y \} \) [i.e., we pick a function that maps \(i \) to \(y \).]

\[\mathbb{P}(C_{i,j}) = \sum_y \mathbb{P}(\mathcal{A}_i(y) \cap \mathcal{A}_j(y)) \]

Note that \(\mathbb{P}(\mathcal{A}_i(y)) = \mathbb{P}(\mathcal{A}_j(y)) = \frac{M^{K-1}}{M^K} = \frac{1}{M} \)
\[\mathbb{P}(\mathcal{A}_i(y) \cap \mathcal{A}_j(y)) = \frac{M^{K-2}}{M^K} = \frac{1}{M^2} = \frac{1}{M} \cdot \frac{1}{M} \]

Independent!
Proof – Random Hash

\[\Omega = \{ h \mid h : [K] \to [M] \} \]

\[\mathbb{P}(h) = \frac{1}{M^K} \]

For every \(i < j \): \(C_{i,j} = \{ h \mid h(i) = h(j) \} \)

Claim. For all \(i < j \), \(\mathbb{P}(C_{i,j}) = \frac{1}{M} \)

Proof: Let \(\mathcal{A}_i(y) = \{ h \mid h(i) = y \} \) [i.e., we pick a function that \(i \) maps to \(y \).]

\[\mathbb{P}(C_{i,j}) = \sum_y \mathbb{P}(\mathcal{A}_i(y) \cap \mathcal{A}_j(y)) = \sum_y \mathbb{P}(\mathcal{A}_i(y)) \cdot \mathbb{P}(\mathcal{A}_j(y)) \]

\[= \sum_y \frac{1}{M^2} = M \times \frac{1}{M^2} = \frac{1}{M} \]
Proof – Random Hash

\[C = \bigcup_{i<j} C_{i,j} \quad \mathbb{P}(C_{i,j}) = \frac{1}{M} \]

Claim. For all \(i < j \), \(\mathbb{P}(C_{i,j}) = 1/M \)

\[\mathbb{P}(C) = \mathbb{P}(\bigcup_{i<j} C_{i,j}) \leq \sum_{i<j} \mathbb{P}(C_{i,j}) = \sum_{i<j} \frac{1}{M} = \binom{n}{2} \frac{1}{M} = \frac{n(n-1)}{2M} \]

Union bound: \(\mathbb{P}(A_1 \cup \cdots \cup A_n) \leq \mathbb{P}(A_1) + \cdots + \mathbb{P}(A_n) \)

Theorem. \(\mathbb{P}(\exists i \neq j : h(i) = h(j)) \leq \frac{n(n-1)}{2M} \)
Back to Data Structures

Problem: Description of $h: [K] \rightarrow [M]$ needs to be stored along with the set S.

Need to store K elements from $[M]$. 😞
Our proof did not need h to be picked at random from all functions ...

Claim. For all $i < j$, $\mathbb{P}(C_{i,j}) = 1/M$

\[
\mathbb{P}(C_{i,j}) = \sum_y \mathbb{P}(A_i(y) \cap A_j(y)) = \sum_y \mathbb{P}(A_i(y)) \mathbb{P}(A_j(y)) \\
= \sum_y \frac{1}{M^2} = M \times \frac{1}{M^2} = \frac{1}{M}
\]

This only requires pairwise independence of the $A_i(y)$'s
Definition. A set H of functions $[K] \rightarrow [M]$ is pairwise independent if for all distinct $i \neq j$, and all $y, y' \in [M]$

$$|\{h \in H \mid h(i) = y \land h(j) = y'\}| = \frac{|H|}{M^2}$$

Theorem. $\mathbb{P}(\exists i \neq j: h(i) = h(j)) \leq \frac{n(n-1)}{2M}$

Proof as before: Only one step different (next slide)
Definition. A set H of functions $[K] \to [M]$ is pairwise independent if for all distinct $i \neq j$, and all $y, y' \in [M]$

$$|\{h \in H | h(i) = y \land h(j) = y'\}| = \frac{|H|}{M^2}$$

Let $\mathcal{A}_i(y) = \{h \in H | h(i) = y\}$

$$\mathbb{P}(\mathcal{A}_i(y) \cap \mathcal{A}_j(y)) = \frac{|\{h \in H | h(i) = y \land h(j) = y'\}|}{|H|} = \frac{1}{M^2}$$

This is all we needed!
Pairwise-Independent Functions

Fact: The set of all functions $[K] \rightarrow [M]$ is pairwise independent

– Size M^K
Pairwise-Independent Functions

Fact (informal)*: There exists a pairwise-independent set \(H \) of functions \([K] \to [M] \) with size \(|H| = K^2 \)

- Described by two elements of \([K]\).
- Idea*: \(x \to (ax + b \mod K) \mod M \) i.e., function described by \(a,b \) in \([K]\).
- Overall solution takes storing \(|S|^2 + 2 \) elements from \([K] \cup \{0\} \) (i.e., array + description of a chosen good function)

Several other applications: Data structures, algorithms, cryptography, ...

*Some cheating here, as usually one gets an approximation of a pairwise independent hash function, where \(\mathbb{P}(\mathcal{A}_i(y) \cap \mathcal{A}_j(y)) \approx \mathbb{P}(\mathcal{A}_i(y)) \cdot \mathbb{P}(\mathcal{A}_j(y)) \)