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Today

• Bayes Rule

• Independence of multiple events
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On LaTeX

• Overleaf is not the best approach for using LaTeX

– Tool for collaborative editing of LaTeX documents.

– Not needed for class.

– Has become somewhat unstable.

• LaTeX is free software – you can find several installations, 
depending on OS.

• Several environment for LaTeX development, your favorite 
editor often will do.
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7.1 – Bayes Rule
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High fever
0.15

0.8

0.5

Flu

Ebola

Assume we observe high fever, what is the 
probability that the subject has Ebola?

Low fever

No feverOther

10&'

0.85 − 10&'

0.2

1

0.4

0.1

“priors”
“conditionals”

“observation”

Posterior: ℙ Ebola|High fever



Bayes Rule
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Theorem. (Bayes Rule) For events - and ℬ, where ℙ - ,ℙ ℬ > 0,  

ℙ ℬ|- =
ℙ ℬ ⋅ ℙ(-|ℬ)

ℙ -

Rev. Thomas Bayes [1701-1761] 

Proof: ℙ - ⋅ ℙ ℬ|- = ℙ(- ∩ ℬ)
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High fever
0.15

0.8

0.5

Flu

Ebola
Low fever

No feverOther

10&'

0.85 − 10&'

0.2

1

0.4

0.1

ℙ Ebola|High fever =
ℙ Ebola ⋅ ℙ(High fever|Ebola)

ℙ High fever

=
10&' ⋅ 1

0.15×0.8 + 10&'×1 + 0.85 − 10&' ×0.1
≈ 7.4×10&'

ℙ Flu|High fever ≈ 0.89

ℙ Other|High fever ≈ 0.11
Most-likely a-posteriori 
outcome (MLA)



Bayes Rule – Example

Setting: An urn contains 6 balls:

• 3 red and 3 blue balls w/ probability ¾
• 6 red balls w/ probability ¼

We draw three balls at random from the urn.
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All three balls are red. What is the probability that the 
remaining (undrawn) balls are all blue?



Sequential Process
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3R
3/4

1/4

1/20

1

Mixed

Not 
mixed

2R1B

1R2B

3B

1/
6
3

Wanted: ℙ Mixed|3R



Sequential Process
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3R
3/4

1/4

1/20

1

Mixed

Not 
mixed

2R1B

1R2B

3B

1/
6
3

ℙ Mixed|3R =
ℙ Mixed ℙ 3R|Mixed

ℙ 3R
=

?
@×

A
BC

?
@×

A
BCD

A
@×E

≈ 0.13



The Monty Hall Problem
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Suppose you're on a game show, and 
you're given the choice of three 
doors: Behind one door is a car; 
behind the others, goats. You pick a 
door, say No. 1, and the host, who 
knows what's behind the doors, opens 
another door, say No. 3, which has a 
goat. He then says to you, "Do you 
want to pick door No. 2?" Is it to your 
advantage to switch your choice?

What would you do? 

Your choice



Monty Hall
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Open 2
1/3

1/3

Door 1

Door 3

Open 3

Say you picked (without loss of generality) Door 1

Door 2
1/3

Car position

1/2

1/2

1

1



Monty Hall
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Open 2
1/3

1/3

Door 1

Door 3

Open 3

Door 2
1/3

1/2

1/2

1

1

ℙ Door 1|Open 3 =
ℙ Door 1 ℙ Open 3|Door 1

ℙ Open 3

=
1
3×

1
2

1
3×

1
2 +

1
3×1

=
1
6
3
6
=
1
3

ℙ Door 2|Open 3 = 1 − ℙ Door 1|Open 3 = 2/3



Monty Hall
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Your 
choice

Bottom line: Always swap!



7.2 – More on Independence
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Independence – Recall
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Definition. Two events - and ℬ are (statistically) independent if

ℙ - ∩ ℬ = ℙ - ⋅ ℙ(ℬ).

“Equivalently.” ℙ -|ℬ = ℙ - .

It is important to understand that independence is a property of probabilities of 
outcomes, not of the root cause generating these events. 

This can be very counterintuitive!



Sequential Process
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R
3/5

1/10

1/2
3R3B

3R1B B

ℙ R | 3R3B =
1
2

Setting: An urn contains:

• 3 red and 3 blue balls w/ probability ¾
• 3 red and 1 blue balls  w/ probability 1/10 

• 5 red and 12 blue balls  w/ probability 3/10 

We draw a ball at random from the urn.

1/2

3/4

1/4

ℙ R =
3
5
×
1
2
+
1
10
×
3
4
+
3
10
×
5
12

=
1
2

3/10

5R12B

Are R and 3R3B independent? 

5/12 7/12

Independent! ℙ R = ℙ R | 3R3B



Independence – Multiple Events
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Definition. Two events - and ℬ are (statistically) independent if

ℙ - ∩ ℬ = ℙ - ⋅ ℙ(ℬ).

If we have more than two events, interesting phenomena can happen.

Equivalently. ℙ -|ℬ = ℙ - .



Example – Two Coin Tosses

19

“first coin is heads”

“second coin is heads”

- = {HH,HT}
ℬ = {HH, TH}

“equal outcomes” J = {HH, TT}

-
HT

TH

TT

HH

K

ℬ ℙ - ∩ ℬ = ℙ - ⋅ ℙ ℬ =
1
4
.

ℙ - ∩ K = ℙ - ⋅ ℙ K =
1
4
.

ℙ - =
1
2

ℙ ℬ =
1
2

ℙ K =
1
2

ℙ ℬ ∩ K = ℙ ℬ ⋅ ℙ K =
1
4
.

Every pair of 
events is 
independent



Pairwise Independence
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Definition. The events -E,… ,-M are pairwise-independent if for all 
distinct N, O ∈ [R], 

ℙ -T ∩ -U = ℙ -T ⋅ ℙ(-U).

As we will see next week, pairwise independence is very powerful in 
computer science. 



Example – Two Coin Tosses
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“first coin is heads”

“second coin is heads”

- = {HH,HT}
ℬ = {HH, TH}

“equal outcomes” J = {HH, TT}

-
HT

TH

TT

HH

K

ℬ ℙ - ∩ ℬ = ℙ - ⋅ ℙ ℬ =
1
4
.

ℙ - ∩ K = ℙ - ⋅ ℙ K =
1
4
.

ℙ - =
1
2

ℙ ℬ =
1
2

ℙ K =
1
2

ℙ ℬ ∩ K = ℙ ℬ ⋅ ℙ K =
1
4
.

-,ℬ, K are 
pairwise
independent 



Independence – Multiple Events
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Definition. The events -E,… ,-M are independent if for every V ≤
R and 1 ≤ OE < OY < ⋯ < O[ ≤ R,

ℙ -UA ∩ -UB ∩ ⋯∩-U\ = ℙ -UA ⋅ ℙ -UB ⋯ℙ -U\ .

Fact. Pairwise independence does not imply independence!

Proof by counterexample*! (see next slide)

* Giving a counterexample is always sufficient to disprove an implication.

Fact. Independence implies pairwise-independence.

Trivial by definition, use V = 2



Example – Two Coin Tosses
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“first coin is heads”

“second coin is heads”

- = {HH,HT}
ℬ = {HH, TH}

“equal outcomes” J = {HH, TT}

-
HT

TH

TT

HH

K

ℬ ℙ - ∩ ℬ ∩ K = ℙ HH =
1
4
.

1
4
≠
1
2
×
1
2
×
1
2
.

ℙ - =
1
2

ℙ ℬ =
1
2

ℙ K =
1
2

-,ℬ, K are not independent 



Example – Two Coin Tosses
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“first coin is heads”

“second coin is heads”

- = {HH,HT}
ℬ = {HH, TH}

“equal outcomes” K = {HH, TT}

ℙ - =
1
2

ℙ ℬ =
1
2

ℙ K =
1
2

-,ℬ, K are not independent 

Important: The formal notion matches the intuition, namely
• If - and ℬ have happened, we know both coins are heads.
• Therefore, K must have happened, i.e., ℙ K - ∩ ℬ = 1



Example – Three Coin Tosses
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“first coin is heads”

“second coin is heads”

- = {HHH,HHT, HTH, HTT}
ℬ = {HHH,HHT, THH, THT}

“third coin is tails” K = {HHT, HTT, THT, TTT}

-

HTH

THH

TTT

K

ℬ ℙ - ∩ ℬ ∩ J = ℙ HHT =
1
8
.

= ℙ - ⋅ ℙ ℬ ⋅ ℙ K

ℙ - =
1
2

ℙ ℬ =
1
2

ℙ K =
1
2

→ -,ℬ, K are independent 

HHH

HHT

HTT
THT ℙ - ∩ ℬ =

1
4
=
1
2
⋅
1
2
= ℙ - ⋅ ℙ ℬ

Similarly: ℙ - ∩ K = ℙ - ⋅ ℙ K
ℙ ℬ ∩ K = ℙ ℬ ⋅ ℙ K



Independence & Conditioning

Conditioning can break independence.
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“first coin is heads”

“second coin is tails”

- = {HH,HT}
ℬ = {HT, TT}

“equal outcomes” J = {HH, TT}

ℙ - =
1
2

ℙ ℬ =
1
2

ℙ K =
1
2

ℙ - ∩ ℬ = ℙ - ⋅ ℙ ℬ =
1
4
.

ℙ - ∩ ℬ|K = 0 b/c if both outcomes are equal, we cannot have - ∩ ℬ

ℙ -|K =
ℙ - ∩ K
ℙ K

=
ℙ HH
ℙ K

=
1
4
×
2
1
=
1
2

ℙ ℬ|K =
1
2

ℙ - ∩ ℬ|K = ℙ -|K ⋅ ℙ ℬ|K ?


