CSE 312 Foundations of Computing II

Lecture 7: Conditional Probabilities

Stefano Tessaro

tessaro@cs.washington.edu

Gradescope enroll code: M8YYEZ

Homework due tonight by 11:59pm.

Often we want to know how likely something is **conditioned on** something else having happened.

Example. If we flip two fair coins, what is the probability that both outcomes are identical conditioned on the fact that at least one of them is heads?

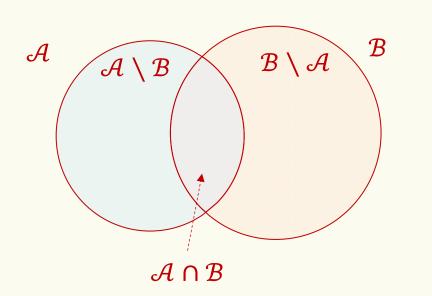
 $Ω = {TT, TH, HT, HH}$ $∀ω ∈ Ω: ℙ(ω) = \frac{1}{4}$

"we get heads at least once" $\mathcal{A} = \{\text{TH}, \text{HT}, \text{HH}\}$ "same outcome" $\mathcal{B} = \{\text{TT}, \text{HH}\}$

If we know \mathcal{A} happened: (1) only three outcomes are possible, and (2) only one of them leads to \mathcal{B} .

We expect: $\mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{1}{3}$ [Verbalized: Probability of \mathcal{B} conditioned on \mathcal{A} .]

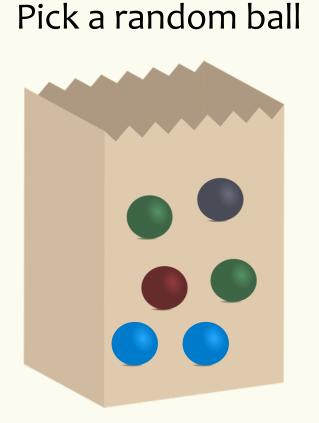
Conditional Probability – Formal Definition



Definition. The conditional probability of \mathcal{B} given \mathcal{A} is $\mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})}.$

Note: This is <u>only</u> defined if $\mathbb{P}(\mathcal{A}) \neq 0$. If $\mathbb{P}(\mathcal{A}) = 0$, then $\mathbb{P}(\mathcal{B}|\mathcal{A})$ is <u>undefined</u>.

Example – Non-uniform Case

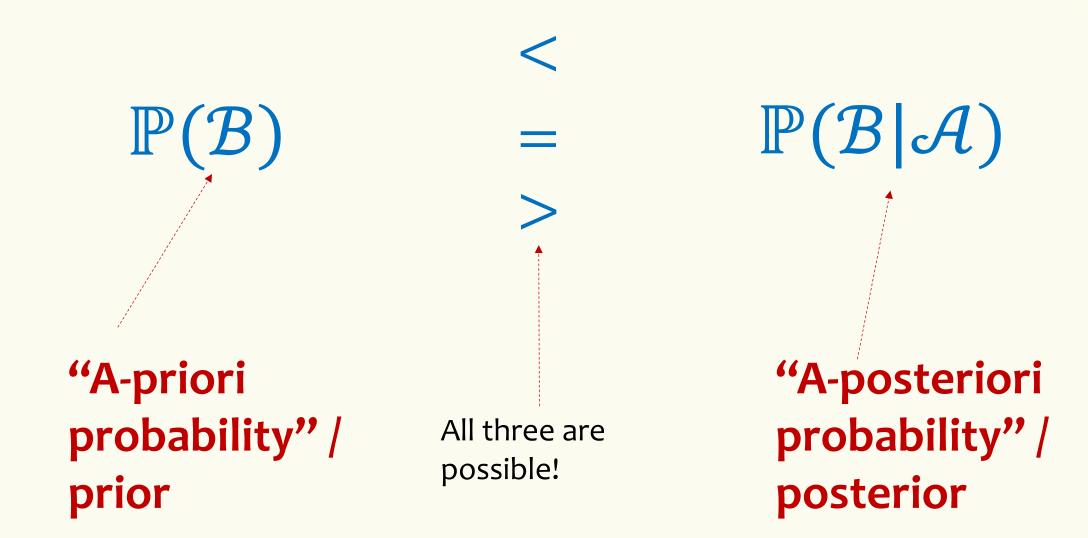


$$\mathbb{P}(\text{green}) = \frac{1}{3}$$

$$\mathbb{P}(\text{red}) = \frac{1}{6} \qquad \mathbb{P}(\text{blue}) = \frac{1}{3} \qquad \mathbb{P}(\text{black}) = \frac{1}{6}$$
"we do not get black" $\mathcal{A} = \{\text{red, blue, green}\}$
"we get blue" $\mathcal{B} = \{\text{blue}\}$

 $\mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{\mathbb{P}(\{\text{blue}\} \cap \{\text{red, blue, green}\})}{\mathbb{P}(\{\text{red, blue, green}\})} = \frac{\mathbb{P}(\{\text{blue}\})}{\mathbb{P}(\{\text{red, blue, green}\})} = \frac{1/3}{5/6} = \frac{2}{5}$

The Effects of Conditioning



Prior Examples – A-posteriori vs a-priori

"heads at least once"

"same outcome"

 $\mathcal{A} = \{\text{TH, HT, HH}\}$ $\mathcal{B} = \{\text{TT, HH}\}$

$$\mathbb{P}(\mathcal{B}) = \frac{1}{2} > \mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{1}{3}$$

"we do not get black" "we get blue" $\mathcal{A} = \{\text{red, blue, green}\}$ $\mathcal{B} = \{\text{blue}\}$

$$\mathbb{P}(\mathcal{B}) = \frac{1}{3} < \mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{2}{5}$$

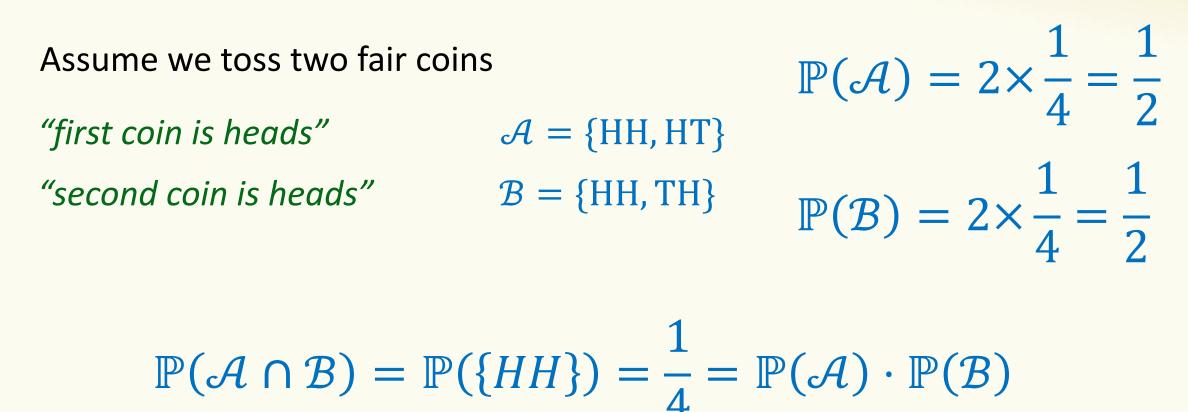
Definition. Two events \mathcal{A} and \mathcal{B} are (statistically) **independent** if $\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}).$

Note: If \mathcal{A}, \mathcal{B} independent, and $\mathbb{P}(\mathcal{A}) \neq 0$, then:

$$\mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})} = \frac{\mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{B})}{\mathbb{P}(\mathcal{A})} = \mathbb{P}(B)$$

Reads as "The probability that \mathcal{B} occurs is independent of \mathcal{A} ."

Independence - Example



Gambler's fallacy

Assume we toss **51** fair coins. Assume we have seen **50** coins, and they are all "heads". What are the odds the **51**st coin is also "heads"?

- $\mathcal{A} =$ first 50 coins are heads
- $B = 51^{st}$ coin is "heads"

$$\mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})} = \frac{2^{-51}}{2^{-50}} = \frac{1}{2}$$

51st coin is independent of outcomes of first 50 tosses!

Gambler's fallacy = Feels like it's time for "tails"!?

Conditional Probability Define a Probability Space

The probability conditioned on \mathcal{A} follows the same properties as (unconditional) probability.

Example. $\mathbb{P}(\mathcal{B}^{c}|\mathcal{A}) = 1 - \mathbb{P}(\mathcal{B}|\mathcal{A})$

Formally. (Ω, \mathbb{P}) is a probability space + $\mathbb{P}(\mathcal{A}) > 0$

Recap

- $\mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})}.$
- Independence: $\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})$.

Chain Rule

$$\mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})} \qquad \qquad \mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{B}|\mathcal{A}) = \mathbb{P}(\mathcal{A} \cap \mathcal{B})$$

Theorem. (Chain Rule) For events $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n$, $\mathbb{P}(\mathcal{A}_1 \cap \dots \cap \mathcal{A}_n) = \mathbb{P}(\mathcal{A}_1) \cdot \mathbb{P}(\mathcal{A}_2 | \mathcal{A}_1) \cdot \mathbb{P}(\mathcal{A}_3 | \mathcal{A}_1 \cap \mathcal{A}_2)$ $\dots \mathbb{P}(\mathcal{A}_n | \mathcal{A}_1 \cap \mathcal{A}_2 \cap \dots \cap \mathcal{A}_{n-1})$

(Proof: Apply above iteratively / formal proof requires induction)

Chain Rule – Applications

Often probability space (Ω, \mathbb{P}) is given **implicitly**.

- Convenient: definition via a sequential process.
 Use chain rule (implicitly) to define probability of outcomes in sample space.
- Allows for easy definition of experiments where $|\Omega| = \infty$

Setting: A fair die is thrown, and each time it is thrown, regardless of the history, it is equally likely to show any of the six numbers.

Rules: In each round

- If outcome = $1, 2 \rightarrow Alice$ wins
- If outcome = $3 \rightarrow Bob$ wins
- Else, play another round

Sequential Process – Example

Events:

- \mathcal{A}_i = Alice wins in round *i*
- \mathcal{N}_i = nobody wins in round *i*

$$\mathbb{P}(\mathcal{A}_1) = \frac{1}{3}$$
$$\mathbb{P}(\mathcal{A}_2) = \mathbb{P}(\mathcal{A}_2 \cap \mathcal{N}_1)$$
$$= \mathbb{P}(\mathcal{N}_1) \times \mathbb{P}(\mathcal{A}_2 | \mathcal{N}_1)$$
$$= \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$

Rules: At each step:

- If outcome = $1, 2 \rightarrow Alice$ wins
- If outcome = $3 \rightarrow Bob$ wins
- Else, play another round

 $\mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{B}|\mathcal{A}) = \mathbb{P}(\mathcal{A} \cap \mathcal{B})$

[The event \mathcal{A}_2 implies \mathcal{N}_1 , and this means that $\mathcal{A}_2 \cap \mathcal{N}_2 = \mathcal{A}_2$]

Sequential Process – Example

Events:

- \mathcal{A}_i = Alice wins in round *i*
- \mathcal{N}_i = nobody wins in round *i*

Rules: At each step:

- If outcome = $1,2 \rightarrow Alice$ wins
- If outcome = $3 \rightarrow Bob$ wins
- Else, play another round

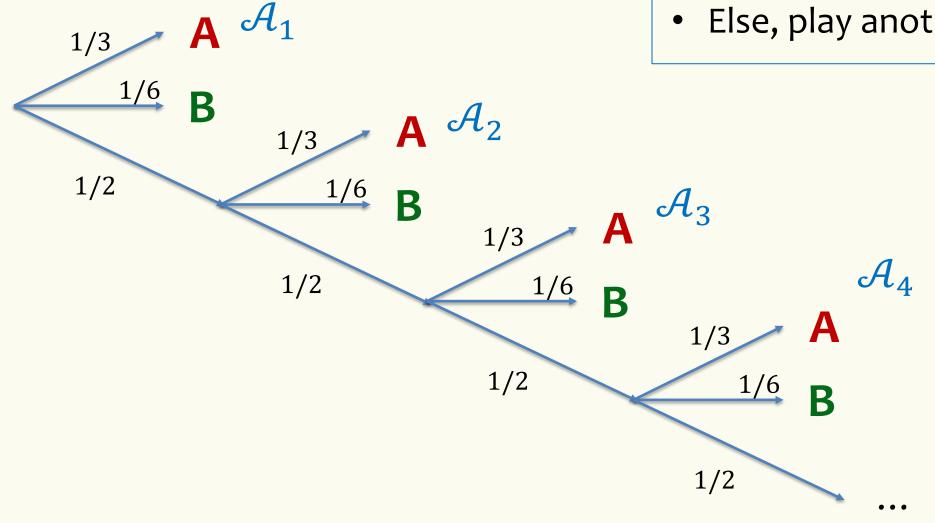
 $\mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{B}|\mathcal{A}) = \mathbb{P}(\mathcal{A} \cap \mathcal{B})$

 $\mathbb{P}(\mathcal{A}_{i}) = \mathbb{P}(\mathcal{A}_{i} \cap \mathcal{N}_{1} \cap \mathcal{N}_{2} \cap \dots \cap \mathcal{N}_{i-1})$ $= \mathbb{P}(\mathcal{N}_{1}) \times \mathbb{P}(\mathcal{N}_{2}|\mathcal{N}_{1}) \times \mathbb{P}(\mathcal{N}_{3}|\mathcal{N}_{1} \cap \mathcal{N}_{2})$ $\dots \times \mathbb{P}(\mathcal{N}_{i-1}|\mathcal{N}_{1} \cap \mathcal{N}_{2} \cap \dots \cap \mathcal{N}_{i-2}) \times \mathbb{P}(\mathcal{A}_{i}|\mathcal{N}_{1} \cap \mathcal{N}_{2} \cap \dots \cap \mathcal{N}_{i-1})$ $= \left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3}$

Sequential Process – Example

Rules: At each step:

- If outcome = $1, 2 \rightarrow$ **Alice** wins
- If outcome = $3 \rightarrow Bob$ wins •
- Else, play another round •



Sequential Process – Crazy Math?

$$\mathcal{A}_i$$
 = Alice wins in round $i \rightarrow \mathbb{P}(\mathcal{A}_i) = \left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3}$

What is the probability that Alice wins?

$$\mathbb{P}(\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \dots) = \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i} \times \frac{1}{3} = \frac{1}{3} \times \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i} = \frac{1}{3} \times 2 = \frac{2}{3}$$

Fact. If $|x| < 1$, then $\sum_{i=0}^{\infty} x^{i} = \frac{1}{1-x}$.

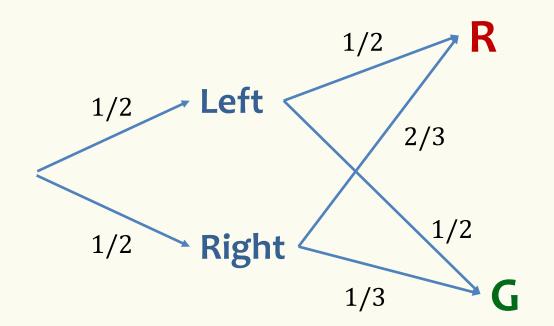
Sequential Process – Another Example

Alice has two pockets:

- Left pocket: Two red balls, two green balls
- **Right pocket:** One red ball, two green balls.

Alice picks a random ball from a random pocket. [Both pockets equally likely, each ball equally likely.]

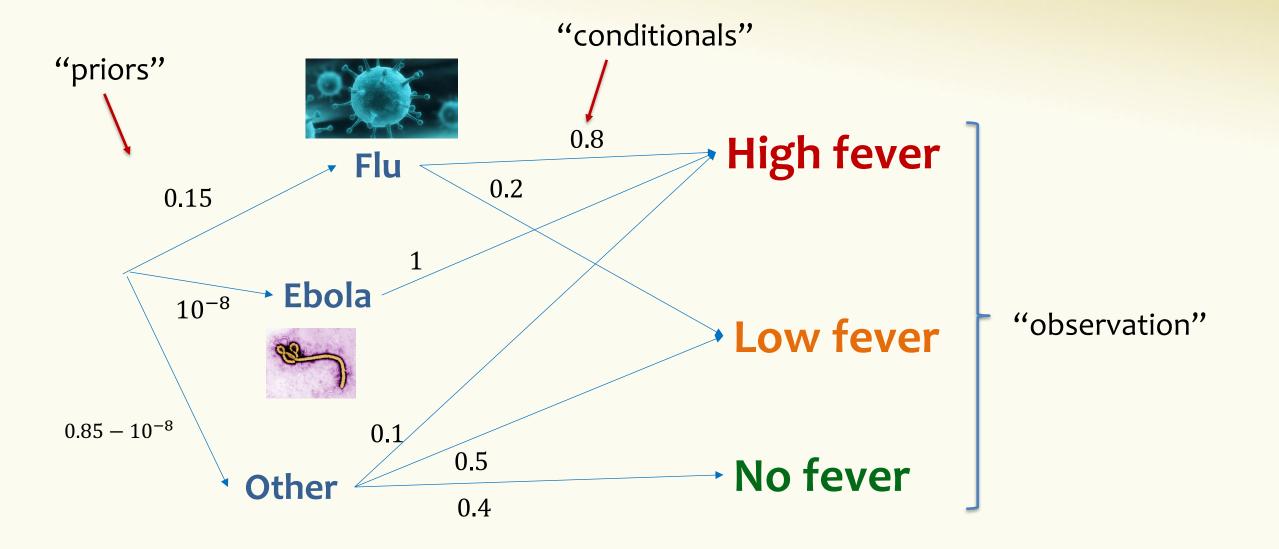
Sequential Process – Another Example



 $\mathbb{P}(\mathbf{R}) = \mathbb{P}(\mathbf{R} \cap \text{Left}) + \mathbb{P}(\mathbf{R} \cap \text{Right}) \quad \text{(Law of total probability)}$ $= \mathbb{P}(\text{Left}) \times \mathbb{P}(\mathbf{R}|\text{Left}) + \mathbb{P}(\text{Right}) \times \mathbb{P}(\mathbf{R}|\text{Right})$ $1 \quad 1 \quad 1 \quad 2 \quad 1 \quad 1 \quad 7$

$$= \frac{-1}{2} \times \frac{-1}{2} + \frac{-1}{2} \times \frac{-1}{3} = \frac{-1}{4} + \frac{-1}{3} = \frac{-1}{12}$$

22



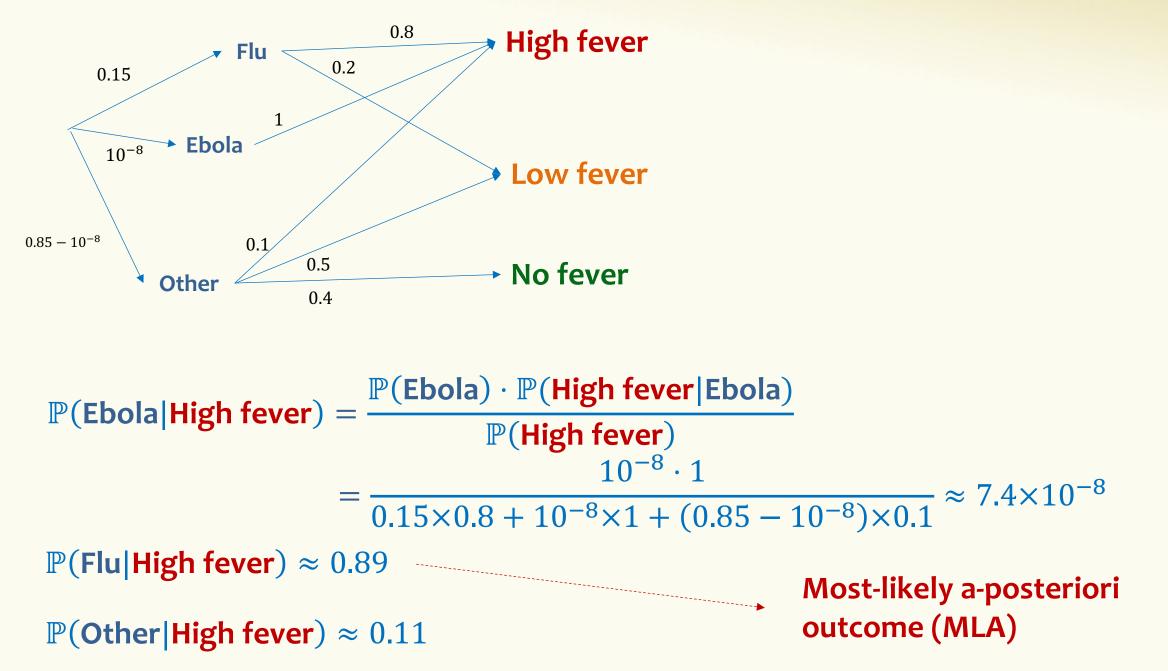
Assume we observe high fever, what is the Posterior: $\mathbb{P}(Ebola|High fever)$ probability that the subject has Ebola?

Bayes Rule

Theorem. (Bayes Rule) For events \mathcal{A} and \mathcal{B} , where $\mathbb{P}(\mathcal{A}), \mathbb{P}(\mathcal{B}) > 0$, $\mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{\mathbb{P}(\mathcal{B}) \cdot \mathbb{P}(\mathcal{A}|\mathcal{B})}{\mathbb{P}(\mathcal{A})}$

Rev. Thomas Bayes [1701-1761]

Proof: $\mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}|\mathcal{A}) = \mathbb{P}(\mathcal{A} \cap \mathcal{B})$



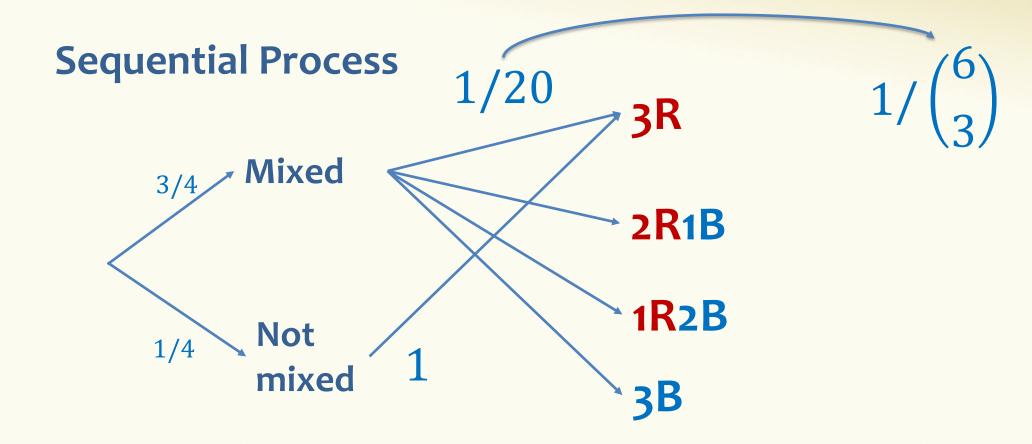
Bayes Rule – Example

Setting: An urn contains 6 balls:

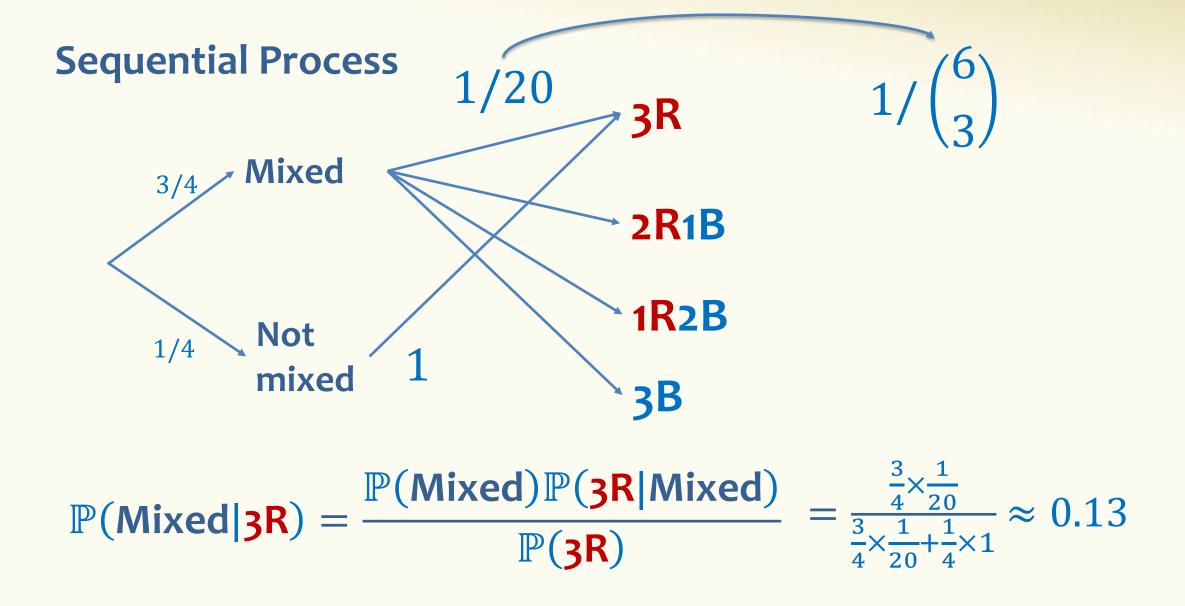
- 3 red and 3 blue balls w/ probability 3/4
- 6 red balls w/ probability 1/4

We draw three balls at random from the urn.

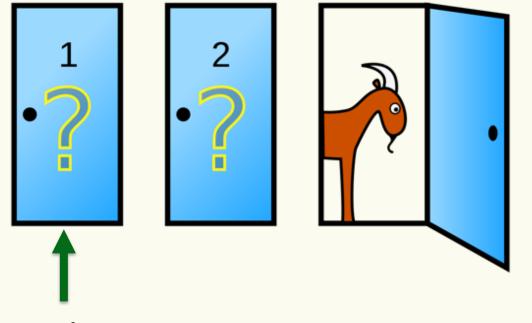
All three balls are red. What is the probability that the remaining (undrawn) balls are all blue?



Wanted: $\mathbb{P}(Mixed|_{3R})$



The Monty Hall Problem



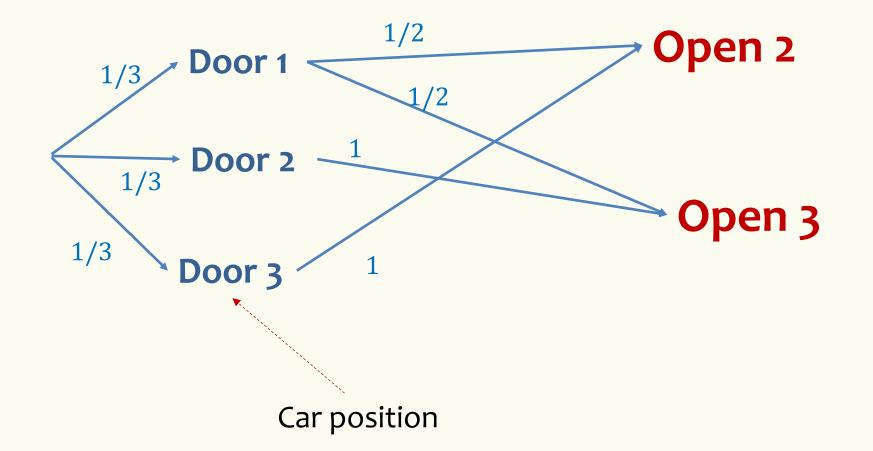
Your choice

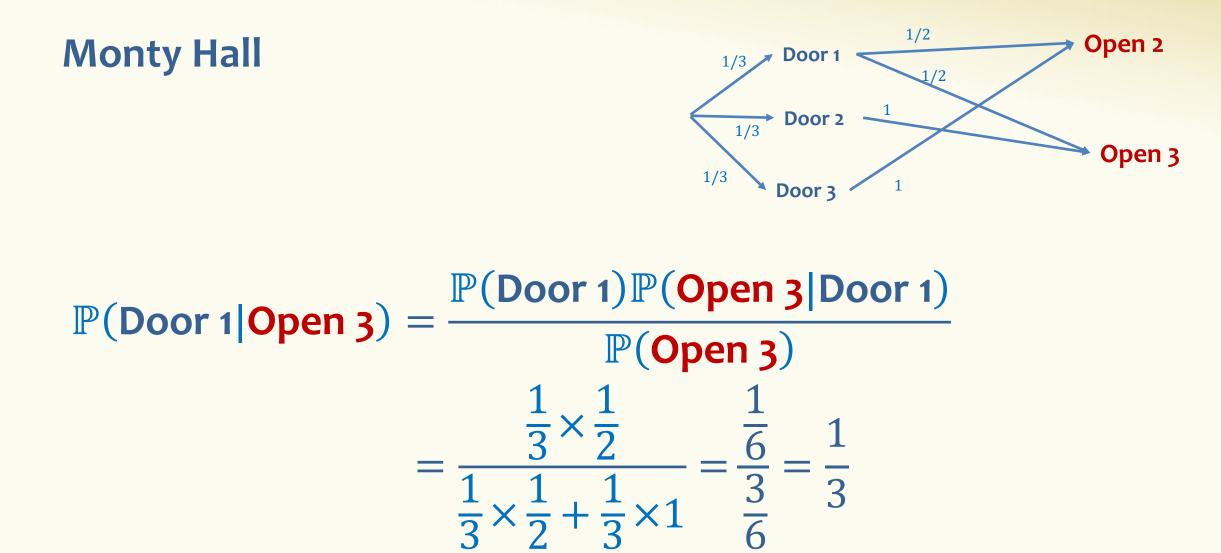
What would you do?

Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?

Monty Hall

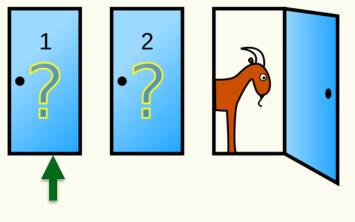
Say you picked (without loss of generality) Door 1





 $\mathbb{P}(\text{Door 2}|\text{Open 3}) = 1 - \mathbb{P}(\text{Door 1}|\text{Open 3}) = 2/3$

Bottom line: Always swap!



Your choice

