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Reminder

Gradescope enroll code: M8YYEZ

Homework due tonight by 11:59pm.
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Conditional Probabilities

Often we want to know how likely something is conditioned 
on something else having happened.
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Example. If we flip two fair coins, what is the 
probability that both outcomes are identical 
conditioned on the fact that at least one of them is 
heads?
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“we get heads at least once”

“same outcome”

! = {TH, HT, HH}

ℬ = {TT, HH}

Ω = {TT, TH, HT, HH} ∀+ ∈ Ω: ℙ + =
1
4

If we know! happened:  (1) only three outcomes are 
possible, and (2) only one of them leads to ℬ.  

We expect:  ℙ ℬ ! = 1
2

[Verbalized: Probability of ℬ conditioned on !.]  



Conditional Probability – Formal Definition
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!

! ∩ ℬ

ℬ ∖!! ∖ ℬ
ℬ Definition. The conditional 

probability of ℬ given ! is 

ℙ ℬ ! =
ℙ ! ∩ ℬ
ℙ !

.

Note: This is only defined if ℙ ! ≠ 0.

If ℙ ! = 0, then ℙ ℬ ! is undefined.



Example – Non-uniform Case
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ℙ red =
1
6

ℙ green =
1
3

Pick a random ball

ℙ blue =
1
3

ℙ black =
1
6

“we do not get black”

“we get blue”
! = {red, blue, green}
ℬ = {blue}

ℙ ℬ ! =
ℙ blue ∩ red, blue, green

ℙ red, blue, green
=

ℙ blue
ℙ red, blue, green

=
1/3
5/6

=
2
5



The Effects of Conditioning
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ℙ(ℬ) ℙ(ℬ|!)
<

>
=

“A-posteriori 
probability” / 
posterior

“A-priori 
probability” / 
prior

All three are 
possible!



Prior Examples – A-posteriori vs a-priori
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“heads at least once”

“same outcome”

! = {TH, HT, HH}

ℬ = {TT, HH}

ℙ ℬ =
1
2

ℙ ℬ|! =
1
3

>

“we do not get black”

“we get blue”
! = {red, blue, green}
ℬ = {blue}

ℙ ℬ =
1
3

ℙ ℬ|! =
2
5

<



Independence
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Definition. Two events ! and ℬ are (statistically) independent if

ℙ ! ∩ ℬ = ℙ ! ⋅ ℙ(ℬ).

Note: If !, ℬ independent, and ℙ ! ≠ 0, then:

ℙ ℬ ! = ℙ !∩ℬ
ℙ !

= ℙ ! ℙ ℬ
ℙ !

= ℙ N

Reads as “The probability that ℬ occurs is independent of !.”



Independence - Example
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Assume we toss two fair coins 

“first coin is heads”

“second coin is heads”

! = {HH,HT}

ℬ = {HH, TH} ℙ ℬ = 2×
1
4
=
1
2

ℙ ! = 2×
1
4
=
1
2

ℙ ! ∩ ℬ = ℙ PP =
1
4
= ℙ ! ⋅ ℙ ℬ

Note here we have defined the probability space assuming
independence, so quite unsurprising – but this makes it all precise.



Gambler’s fallacy
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Assume we toss 51 fair coins. 
Assume we have seen 50 coins, and they are all “heads”.
What are the odds the 51st coin is also “heads”? 

! = first 50 coins are heads
N = 51st coin is ”heads”

ℙ ℬ ! =
ℙ ! ∩ ℬ
ℙ !

=
2QR1

2QRS
=
1
2

51st coin is independent of 
outcomes of first 50 tosses!

Gambler’s fallacy = Feels like it’s time for ”tails”!?



Conditional Probability Define a Probability Space
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The probability conditioned on ! follows the same properties as 
(unconditional) probability.

Example. ℙ ℬT ! = 1 − ℙ(ℬ|!)

Formally. (Ω, ℙ) is a probability space + ℙ ! > 0

(Ω, ℙ(⋅ |!)) is a probability space



Recap

• ℙ ℬ ! = ℙ !∩ℬ
ℙ !

.

• Independence: ℙ ! ∩ ℬ = ℙ ! ⋅ ℙ(ℬ).
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Chain Rule
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ℙ ℬ ! =
ℙ ! ∩ ℬ
ℙ !

ℙ ! ℙ ℬ ! = ℙ ! ∩ ℬ

Theorem. (Chain Rule) For events !1,!V, … ,!X , 

ℙ !1 ∩⋯∩!X = ℙ !1 ⋅ ℙ !V !1 ⋅ ℙ(!2|!1 ∩!V)
⋯ℙ(!X|!1 ∩!V ∩⋯∩!XQ1)

(Proof: Apply above iteratively / formal proof requires induction)



Chain Rule – Applications

Often probability space Ω,ℙ is given implicitly.
• Convenient: definition via a sequential process.
–Use chain rule (implicitly) to define probability of 

outcomes in sample space.
• Allows for easy definition of experiments where Ω = ∞
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Sequential Process – Example 

Setting: A fair die is thrown, and each time it is thrown, 
regardless of the history, it is equally likely to show any of the 
six numbers.
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Rules: In each round
• If outcome = 1,2 → Alice wins
• If outcome = 3 → Bob wins
• Else, play another round



Sequential Process – Example 
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Rules: At each step: 
• If outcome = 1,2 → Alice wins
• If outcome = 3 → Bob wins
• Else, play another round

Events:
• !\ = Alice wins in round ]
• \̂ = nobody wins in round ]

ℙ !1 =
1
3

ℙ !V = ℙ(!V ∩ 1̂)

= ℙ( 1̂)×ℙ(!V| 1̂)

ℙ ! ℙ ℬ ! = ℙ ! ∩ ℬ

=
1
2
×
1
3
=
1
6

[The event !V implies 1̂, and this 
means that !V ∩ V̂ = !V]



Sequential Process – Example 
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Rules: At each step: 
• If outcome = 1,2 → Alice wins
• If outcome = 3 → Bob wins
• Else, play another round

Events:
• !\ = Alice wins in round ]
• \̂ = nobody wins in round ]

ℙ !\ = ℙ(!\ ∩ 1̂ ∩ V̂ ∩ ⋯∩ \̂Q1)

= ℙ( 1̂) ×ℙ( V̂| 1̂)

ℙ ! ℙ ℬ ! = ℙ ! ∩ ℬ

=
1
2

\Q1

×
1
3

×ℙ( 2̂| 1̂ ∩ V̂)
⋯×ℙ( \̂Q1| 1̂ ∩ V̂ ∩ ⋯∩ \̂QV) ×ℙ(!\| 1̂ ∩ V̂ ∩ ⋯∩ \̂Q1)



Sequential Process – Example
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Rules: At each step: 
• If outcome = 1,2 → Alice wins
• If outcome = 3 → Bob wins
• Else, play another roundA

B
1/3

1/6

1/2

A

B
1/3

1/6

1/2

A

B
1/3

1/6

1/2

A

B
1/3

1/6

1/2 …

!1

!V

!2

!`



Sequential Process – Crazy Math? 
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!\ = Alice wins in round ] → ℙ !\ = 1
V

\Q1
× 1
2

What is the probability that Alice wins?

ℙ !1 ∪!V ∪⋯ = b
\cS

d
1
2

\

×
1
3

=
1
3
×b
\cS

d
1
2

\

=
1
3
×2 =

2
3

Fact. If e < 1, then ∑\cS
d e\ = 1

1Qg
. 



Sequential Process – Another Example

Alice has two pockets: 
• Left pocket: Two red balls, two green balls
• Right pocket: One red ball, two green balls.

Alice picks a random ball from a random pocket. 
[Both pockets equally likely, each ball equally likely.]
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Sequential Process – Another Example
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R

G

1/2

1/2 1/2

1/2

2/3
Left

Right
1/3

ℙ R = ℙ R ∩ Left + ℙ R ∩ Right
= ℙ Left ×ℙ R|Left + ℙ Right ×ℙ R|Right

=
1
2
×
1
2
+
1
2
×
2
3
=
1
4
+
1
3
=
7
12

(Law of total probability)
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High fever
0.15

0.8

0.5

Flu

Ebola

Assume we observe high fever, what is the 
probability that the subject has Ebola?

Low fever

No feverOther

10Qk

0.85 − 10Qk

0.2

1

0.4

0.1

“priors”
“conditionals”

“observation”

Posterior: ℙ Ebola|High fever



Bayes Rule
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Theorem. (Bayes Rule) For events ! and ℬ, where ℙ ! ,ℙ ℬ > 0,  

ℙ ℬ|! =
ℙ ℬ ⋅ ℙ(!|ℬ)

ℙ !

Rev. Thomas Bayes [1701-1761] 

Proof: ℙ ! ⋅ ℙ ℬ|! = ℙ(! ∩ ℬ)
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High fever
0.15

0.8

0.5

Flu

Ebola
Low fever

No feverOther

10Qk

0.85 − 10Qk

0.2

1

0.4

0.1

ℙ Ebola|High fever =
ℙ Ebola ⋅ ℙ(High fever|Ebola)

ℙ High fever

=
10Qk ⋅ 1

0.15×0.8 + 10Qk×1 + 0.85 − 10Qk ×0.1
≈ 7.4×10Qk

ℙ Flu|High fever ≈ 0.89

ℙ Other|High fever ≈ 0.11
Most-likely a-posteriori 
outcome (MLA)



Bayes Rule – Example

Setting: An urn contains 6 balls:
• 3 red and 3 blue balls w/ probability ¾
• 6 red balls w/ probability ¼
We draw three balls at random from the urn.
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All three balls are red. What is the probability that the 
remaining (undrawn) balls are all blue?



Sequential Process
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3R
3/4

1/4

1/20

1

Mixed

Not 
mixed

2R1B

1R2B

3B

1/
6
3

Wanted: ℙ Mixed|3R



Sequential Process
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3R
3/4

1/4

1/20

1

Mixed

Not 
mixed

2R1B

1R2B

3B

1/
6
3

ℙ Mixed|3R =
ℙ Mixed ℙ 3R|Mixed

ℙ 3R
=

o
p×

q
rs

o
p×

q
rst

q
p×1

≈ 0.13



The Monty Hall Problem
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Suppose you're on a game show, and 
you're given the choice of three 
doors: Behind one door is a car; 
behind the others, goats. You pick a 
door, say No. 1, and the host, who 
knows what's behind the doors, opens 
another door, say No. 3, which has a 
goat. He then says to you, "Do you 
want to pick door No. 2?" Is it to your 
advantage to switch your choice?

What would you do? 

Your choice



Monty Hall
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Open 2
1/3

1/3

Door 1

Door 3
Open 3

Say you picked (without loss of generality) Door 1

Door 2
1/3

Car position

1/2

1/2

1

1



Monty Hall
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Open 2
1/3

1/3

Door 1

Door 3

Open 3
Door 2

1/3

1/2

1/2

1

1

ℙ Door 1|Open 3 =
ℙ Door 1 ℙ Open 3|Door 1

ℙ Open 3

=
1
3×

1
2

1
3×

1
2 +

1
3×1

=
1
6
3
6

=
1
3

ℙ Door 2|Open 3 = 1 − ℙ Door 1|Open 3 = 2/3



Monty Hall
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Your 
choice

Bottom line: Always swap!


