CSE 312 Foundations of Computing II

Lecture 6: Probability of Events

Stefano Tessaro

tessaro@cs.washington.edu

Last time - recap

- Probability spaces
- Events

Either finite or infinite countable (e.g., integers)

Definition. A (discrete) **probability space** is a pair (Ω, \mathbb{P}) where:

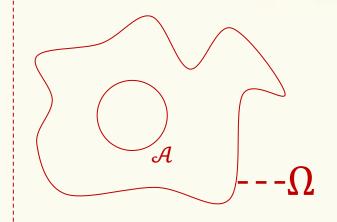
- Ω is a set called the **sample space**.
- \mathbb{P} is the **probability measure**, a function $\mathbb{P}: \Omega \to \mathbb{R}$ such that:
 - $-\mathbb{P}(x) \geq 0$ for all $x \in \Omega$
 - $-\sum_{x\in\Omega}\mathbb{P}(x)=1$

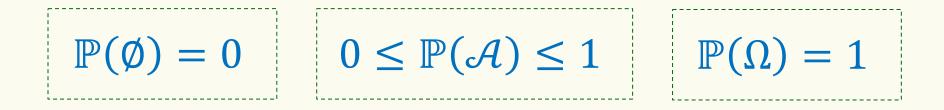
Set of possible elementary outcomes

> Likelihood of each **elementary outcome**

Events

Definition. An **event** in a probability space (Ω , \mathbb{P}) is a subset $\mathcal{A} \subseteq \Omega$. Its probability is $\mathbb{P}(\mathcal{A}) = \sum_{\omega \in \mathcal{A}} \mathbb{P}(\omega)$





Example – Fair Dice

We throw two fair dice.

$$\Omega = \{(i,j) \mid i,j \in [6]\}$$
$$\mathbb{P}((i,j)) = \frac{1}{36}.$$

What is the probability the two dice add up to 7? What is the probability the two dice do not add up to 7? Example – Fair Dice $\Omega = \{(i,j) \mid i,j \in [6]\} \qquad \mathbb{P}((i,j)) = \frac{1}{36}.$

What is the probability the two dice add up to 7?

 $\mathcal{A} = \{(1,6), (6,1), (2,5), (5,2), (3,4), (4,3)\}$ $\mathbb{P}(\mathcal{A}) = \frac{6}{36} = \frac{1}{6}$

Example – Fair Dice

$$\Omega = \{(i,j) \mid i,j \in [6]\} \qquad \mathbb{P}((i,j)) = \frac{1}{36}.$$

What is the probability the two dice add up to 7?

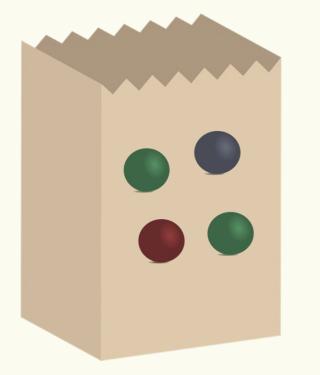
$$\mathbb{P}(\mathcal{A}) = \frac{6}{36} = \frac{1}{6}$$

What is the probability the two dice do not add up to 7?

$$\mathbb{P}(\mathcal{A}^c) = 1 - \frac{1}{6} = \frac{5}{6}$$

Picking Balls

Pick two random balls, w/o replacement



 $\Omega = \{ rg, rb, gr, gg, gb, bg, br \}$ $\mathbb{P}(\mathrm{rg}) = \mathbb{P}(\mathrm{bg}) = \frac{1}{4} \times \frac{2}{3} = \frac{1}{6}$ $\mathbb{P}(rb) = \mathbb{P}(br) = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12}$ $\mathbb{P}(\mathrm{gr}) = \mathbb{P}(\mathrm{gg}) = \mathbb{P}(\mathrm{gb}) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ $\mathbb{P}(\mathcal{A}) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$

"we do not get black" $\mathcal{A} = \{rg, gr, gg\}$ "first ball is red" $\mathcal{B} = \{rg, rb\}$

 $\mathcal{A} = \{ \text{rg, gr, gg} \} \qquad \mathbb{P}(\mathcal{A}) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{6} + \frac{1}{12} = \frac{1}{4}$

8

Example – Birthdays

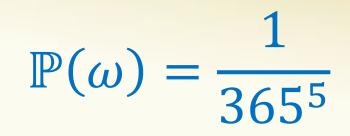
Context: 5 people are assigned random birthdays (out of 365 possible ones). What is the probability that they all have different birthdays?

 $\Omega = [365]^5$

$$\mathcal{E} = \{(x_1, \dots, x_5) \in [365]^5 \mid x_1, \dots, x_5 \text{ are distinct}\}$$

$$\mathbb{P}(\omega) = \frac{1}{365^5}$$

Example – Birthdays



 $|\mathcal{E}| = 365 \times 364 \times 363 \times 362 \times 361$

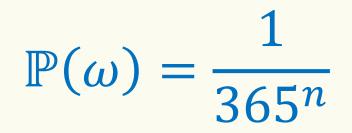
 $\mathbb{P}(\mathcal{E}) = \frac{365 \times 364 \times 363 \times 362 \times 361}{365^5}$ $= \frac{365}{365} \times \frac{364}{365} \times \frac{363}{365} \times \frac{362}{365} \times \frac{361}{365}$ = 0.07296

= 0.97286 ...

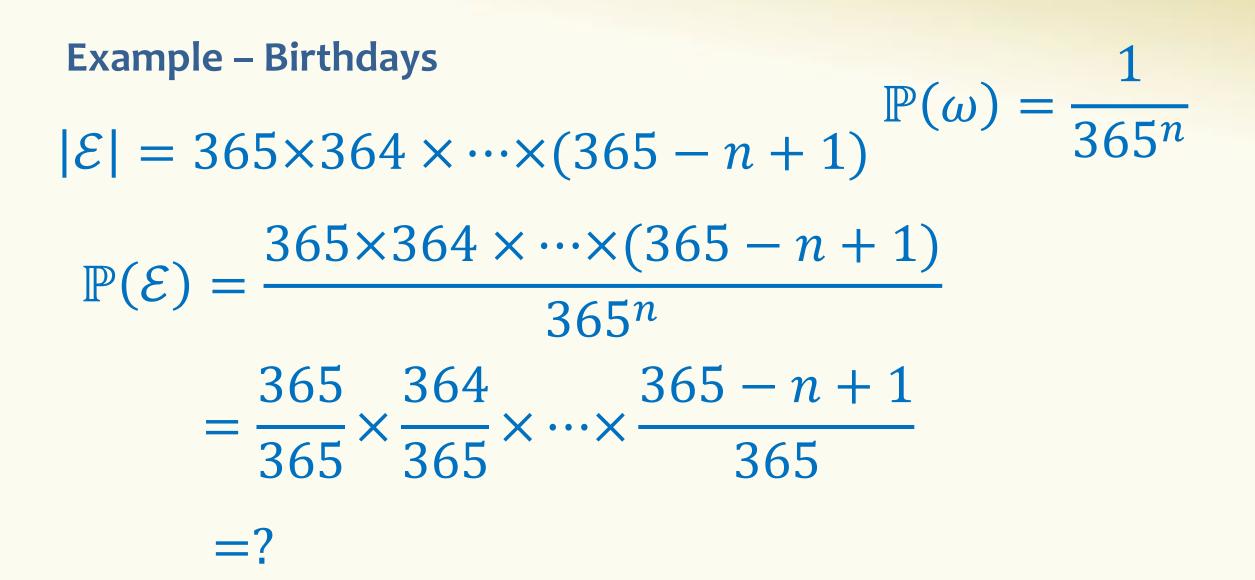
Example – Birthdays - Generalization

Context: $n \leq 365$ people are assigned random birthdays (out of 365 possible ones). What is the probability that they all have different birthdays?

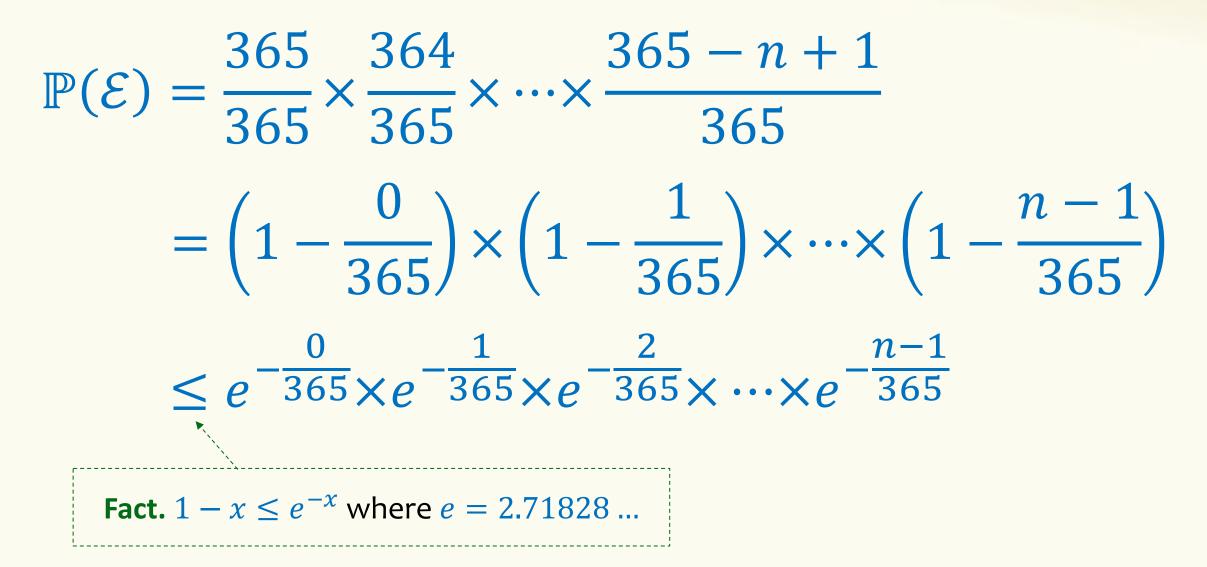
 $\Omega = [365]^n$



$\mathcal{E} = \{(x_1, ..., x_n) \in [365]^n \mid x_1, ..., x_n \text{ are distinct}\}$



Example – Birthdays



Example – Birthdays

$$\mathbb{P}(\mathcal{E}) \leq e^{-\frac{0}{365} \times e^{-\frac{1}{365} \times e^{-\frac{2}{365} \times \cdots \times e^{-\frac{n-1}{365}}}} = e^{-\frac{n-1}{365}}$$

$$= e^{-\left(\frac{0}{365} + \frac{1}{365} + \cdots + \frac{n-1}{365}\right)} = e^{-\frac{n(n-1)}{2 \times 365}}$$

$$e.g., n = 23$$

$$\mathbb{P}(\mathcal{E}) \leq e^{-0.69315...} \approx 0.5$$
[Near matching lower bound can be proved]

Birthday Paradox



Interpretation. With 23 people we are already guaranteed that two people have the same Birthday with probability ~0.5.

(In class: we are almost certain!)

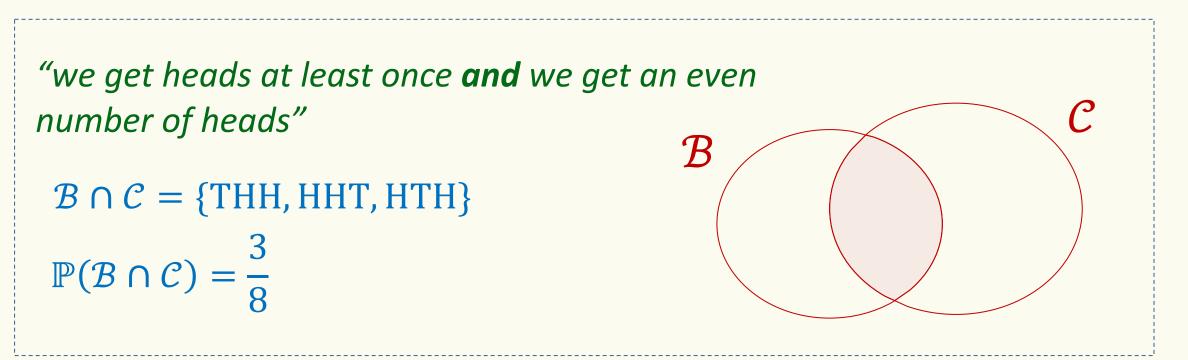
Next: Composing events

Events – AND

"we get heads at least once" $\mathcal{B} = \{\text{TTH}, \text{THT}, \text{THH}, \text{HTT}, \text{HTH}, \text{HHT}, \text{HHH}\}$

"we get an even number of heads"

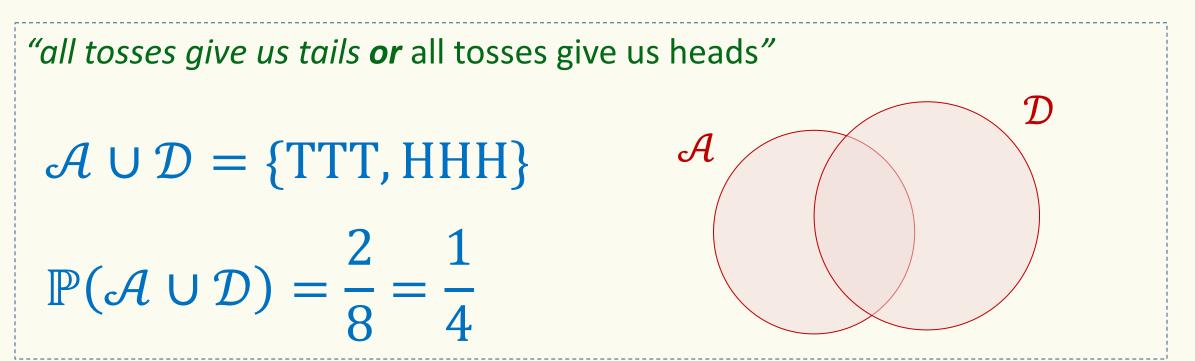
 $C = \{\text{TTT, THH, HHT, HTH}\}$



Events – OR

"all tosses give us tails" $A = {TTT}$

"all tosses give us heads" $\mathcal{D} = \{HHH\}$



Events – NOT

"all tosses give us tails" $A = \{TTT\}$

Properties of Probability

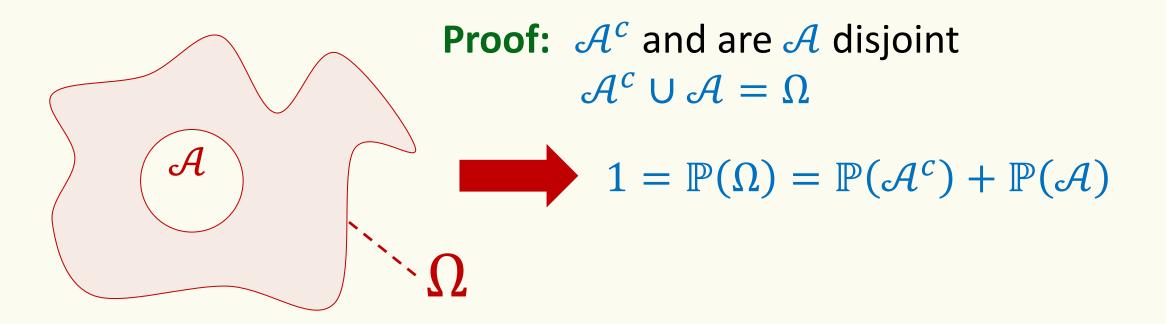
Theorem. If the events $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n$ are pairwise disjoint, i.e., $\mathcal{A}_i \cap \mathcal{A}_j = \emptyset$ for all $i \neq j$, then $\mathbb{P}(\mathcal{A}_1 \cup \mathcal{A}_2 \cup \dots \cup \mathcal{A}_n) = \mathbb{P}(\mathcal{A}_1) + \mathbb{P}(\mathcal{A}_2) + \dots + \mathbb{P}(\mathcal{A}_n)$

"Additivity of probability"

Follows easily from $\mathbb{P}(\mathcal{A}) = \sum_{\omega \in \mathcal{A}} \mathbb{P}(\omega)$

Consequences of Additivity – Complement

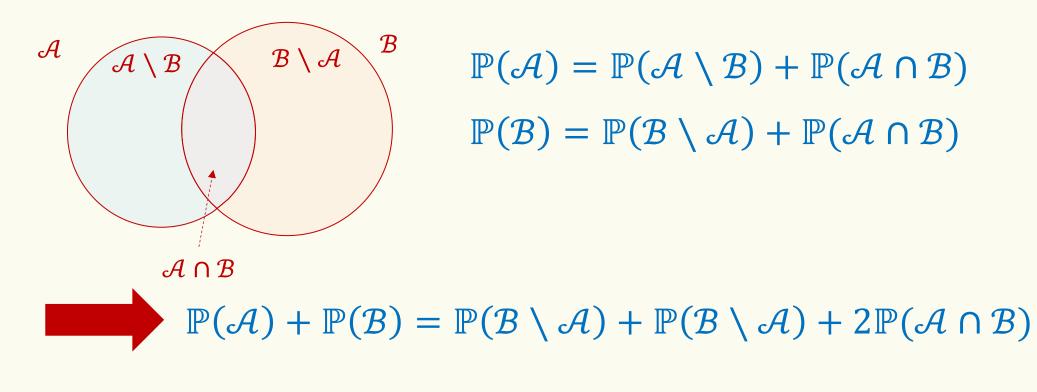
Fact. For any \mathcal{A} $\mathbb{P}(\mathcal{A}^c) = 1 - \mathbb{P}(\mathcal{A})$



Consequences of Additivity – Inclusion-Exclusion

Fact. $\mathbb{P}(\mathcal{A} \cup \mathcal{B}) = \mathbb{P}(\mathcal{A}) + \mathbb{P}(\mathcal{B}) - \mathbb{P}(\mathcal{A} \cap \mathcal{B})$

Proof. $\mathbb{P}(\mathcal{A} \cup \mathcal{B}) = \mathbb{P}(\mathcal{A} \setminus \mathcal{B}) + \mathbb{P}(\mathcal{B} \setminus \mathcal{A}) + \mathbb{P}(\mathcal{A} \cap \mathcal{B})$



Consequences of Additivity – Law of Total Probability

Theorem. If the events $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n$ are a <u>partition</u> of Ω , then for any event \mathcal{B} ,

 $\mathbb{P}(\mathcal{B}) = \mathbb{P}(\mathcal{A}_1 \cap \mathcal{B}) + \dots + \mathbb{P}(\mathcal{A}_n \cap \mathcal{B})$

