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Today

• Randomized algorithms: Polynomial-identity testing
– An Application: Hashing!

• Wrap-up

• Also: There are office hours today!

– Leo & Siva will each hold one hour!

– There will be office hours on Monday

– Stay tuned!
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Problem
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1 GB file ! 1 GB file "

Goal: Alice and Bob want to know 
whether they have the same file, by 
communicating as little as possible. 

If they want to be absolutely certain, they need to communicate 1GB 
of data in the worst case.

What if they accept some small error probability? (Say at most 1/16?)

We will see: Answer approx 64 bits = 8 bytes!



Polynomials

Definition. A polynomial is a formal expression of the form 
# $ = #& + #($ + #)$

) +⋯+ #+$
+, where #&, #(, … , #+

are the numbers (the coefficients) and . is the degree.
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Examples: 
• 1 + $ + $)

• 1 + 3$ + 5$2



Polynomials modulo a prime

Definition. A polynomial mod 3 is a formal expression of the 
form # $ = #& + #($ + #)$

) +⋯+ #+$
+, where 

#&, #(, … , #+ ∈ ℤ6 are the coefficients and . is the degree.
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We denote ℤ6 = {0,1, … , 3 − 1}



Polynomials modulo a prime

Definition. A polynomial mod a prime 3 is a formal 
expression of the form # $ = #& + #($ + #)$

) +⋯+
#+$

+, where #&, #(, … , #+ ∈ ℤ6 are the coefficients and . is 
the degree.
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Definition. The evaluation of # $ = #& + #($ + #)$
) +⋯+

#+$
+ at ; ∈ ℤ6 is the value

# ; = #& + #(; + #);
) + ⋯+ #+;

+ mod 3



Example

3 = 7, # $ = 1 + $ + $)

– # 0 = 1

– # 1 = 1 + 1 + 1 = 3

– # 2 = 1 + 2 + 4 = 7 mod 7 = 0

– # 3 = 1 + 3 + 2 = 6

– # 4 = 1 + 4 + 2 = 0

– # 5 = 1 + 5 + 4 = 3

– # 6 = 1 + 6 + 1 = 1
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Here, 2 and 4 are 
the zeros of # $



Zeros of Polynomial

Q: How many zeros does a polynomial # $ mod 3 have? 
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Theorem. (Schwartz-Zippel) A non-zero polynomial 
# $ mod 3 of degree . has at most . zeros.

If we pick ; uniformly at random from ℤ6 and # $ has degree 
., what what can we ay about ℙ(# ; = 0)? 

ℙ # ; = 0 ≤
+
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Non-zero = at least one coefficient is not zero!



File Comparison
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1 GB file ! 1 GB file "



File Comparison Protocol
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• Alice and Bob agree on a prime 3

• Alice encodes ! as a sequence (#&, #(, … , #+) of elements of ℤ6
– Let # $ = #& + #($ +⋯+ #+$

+

• Bob encodes " as a sequence (G&, G(, … , G+) of elements of ℤ6
– Let G $ = G& + G($ +⋯+ G+$

+

• Alice picks a random ; ∈ ℤ6 and sends #∗ = # ; and ; to Bob

• Bob checks whether #∗ = G ;
– If so, Bob says “equal”
– If not, Bob says “not equal”



File Comparison Protocol - Analysis
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• Alice encodes ! as a sequence (#&, #(, … , #+) of elements of ℤ6
– Let # $ = #& + #($ +⋯+ #+$

+

• Bob encodes " as a sequence (G&, G(, … , G+) of elements of ℤ6
– Let G $ = G& + G($ +⋯+ G+$

+

• Alice picks a random ; ∈ ℤ6 and sends #∗ = # ; and ; to Bob

• Bob checks whether #∗ = G ;

If ! = "
• … then # $ = G($)
• … then #∗ = # ; = G(;)



File Comparison Protocol - Analysis
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• Alice encodes ! as a sequence (#&, #(, … , #+) of elements of ℤ6
– Let # $ = #& + #($ +⋯+ #+$

+

• Bob encodes " as a sequence (G&, G(, … , G+) of elements of ℤ6
– Let G $ = G& + G($ +⋯+ G+$

+

• Alice picks a random ; ∈ ℤ6 and sends #∗ = # ; and ; to Bob

• Bob checks whether #∗ = G ;

If ! ≠ "
• … then # $ ≠ G($)
• … then J $ = # $ − G $

non-zero and degree at most .

ℙ # ; = G(;) = ℙ J ; = 0 ≤
+
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Example – Parameters 

1GB = 230 bytes = 233 bits, i.e., there are 2)
KK

possible files

• Pick 3 slightly larger than 2L) = 2)
M

• Then, we can use . = 2)N

– Now we have 3+ > 2)
KK

possible file to encode. (Is enough!)

• Probability that two files are misidentified as identical

– At most 
+

6
≤

)PQ

)KP
= 2RS =

(

(T

• Alice transmits two integers in ℤ6
– Each takes roughly 32 bits = 4 bytes
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More efficiently

• Working with primes is a bit tricky

• Polynomials can e.g., be defined also over appropriate 
mathematical structure (an “extension field”) where the 
coefficients are chunks of 8 bytes.
– Such polynomials can be evaluated super-efficiently

– Hardware support in modern CPUs. 

– Your phone, your laptop, etc is evaluating such polynomials
continuously [Main application: Cryptographic integrity protection 
of data]
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End Class Summary

Here 
we are ….
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CSE 312 – Exam 

Will cover everything from class, including:

• HW 1-8

• Sections 

• Applications: Not quite, but … (see next slide)
– Not this last week, and a few more things
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Applications

• Pairwise-independent hashing

• Naïve Bayes and basic machine learning

• Data compression

• Differential privacy

• Randomized algorithms
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Strictly speaking not covered by final, but help practicing materials 
from class. 



Learning tips

• Focus on first principles
– Especially for discrete probability, what are we really trying to solve?!
– What is the underlying (Ω, ℙ)? Helps even when you are not asked explicitly to 

do. It all boils down to this.
• What can I use, what can I not use? 
– Is independence assumed? Do I need to prove it first?
– If you use a fact / theorem, always think (and state) why the theorem can be 

used.
– Make sure never to leave anything unspecified. For example, if you describe 

multiple random variables, you have to explicitly say how they are corelated 
with each other.

• What result would you expect? Is what you get meaningful? In the right 
range?
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Learning tips (cont’d)

• There are tons of resources.

• Textbook covers most, but not all of what we have done.

• Ask if unsure about your own resource for practice.
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