Lecture 28: Randomized Algorithms II

Stefano Tessaro
tessaro@cs.washington.edu
Today

• Randomized algorithms: Polynomial-identity testing
 – An Application: Hashing!
• Wrap-up
• Also: There are office hours today!
 – Leo & Siva will each hold one hour!
 – There will be office hours on Monday
 – Stay tuned!
PLEASE
COMPLETE
THE
CLASS
EVALUATION
Problem

Goal: Alice and Bob want to know whether they have the same file, by communicating as little as possible.

1 GB file A \hspace{1cm} 1 GB file B

If they want to be absolutely certain, they need to communicate 1GB of data in the worst case.

What if they accept some small error probability? (Say at most 1/16?)

We will see: Answer approx 64 bits = 8 bytes!
Polynomials

Definition. A polynomial is a formal expression of the form

\[a(X) = a_0 + a_1X + a_2X^2 + \cdots + a_dX^d, \]

where \(a_0, a_1, \ldots, a_d\) are the numbers (the **coefficients**) and \(d\) is the **degree**.

Examples:

- \(1 + X + X^2\)
- \(1 + 3X + 5X^5\)
Polynomials modulo a prime

We denote $\mathbb{Z}_p = \{0,1,\ldots,p-1\}$

Definition. A polynomial mod p is a formal expression of the form $a(X) = a_0 + a_1X + a_2X^2 + \cdots + a_dX^d$, where $a_0, a_1, \ldots, a_d \in \mathbb{Z}_p$ are the coefficients and d is the degree.
Polynomials modulo a prime

Definition. A polynomial mod a prime p is a formal expression of the form $a(X) = a_0 + a_1 X + a_2 X^2 + \cdots + a_d X^d$, where $a_0, a_1, \ldots, a_d \in \mathbb{Z}_p$ are the coefficients and d is the degree.

Definition. The evaluation of $a(X) = a_0 + a_1 X + a_2 X^2 + \cdots + a_d X^d$ at $x \in \mathbb{Z}_p$ is the value

$$a(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_d x^d \mod p$$
Example

\[p = 7, \ a(X) = 1 + X + X^2 \]

- \(a(0) = 1 \)
- \(a(1) = 1 + 1 + 1 = 3 \)
- \(a(2) = 1 + 2 + 4 = 7 \mod 7 = 0 \)
- \(a(3) = 1 + 3 + 2 = 6 \)
- \(a(4) = 1 + 4 + 2 = 0 \)
- \(a(5) = 1 + 5 + 4 = 3 \)
- \(a(6) = 1 + 6 + 1 = 1 \)

Here, 2 and 4 are the zeros of \(a(X) \)
Q: How many zeros does a polynomial $a(X) \mod p$ have?

Theorem. (Schwartz-Zippel) A non-zero polynomial $a(X) \mod p$ of degree d has at most d zeros.

If we pick x uniformly at random from \mathbb{Z}_p and $a(X)$ has degree d, what can we say about $\mathbb{P}(a(x) = 0)$?

$\mathbb{P}(a(x) = 0) \leq \frac{d}{p}$

Non-zero = at least one coefficient is not zero!
File Comparison

1 GB file A

1 GB file B
File Comparison Protocol

• Alice and Bob agree on a prime p

• Alice encodes A as a sequence (a_0, a_1, \ldots, a_d) of elements of \mathbb{Z}_p
 – Let $a(X) = a_0 + a_1X + \cdots + a_dX^d$

• Bob encodes B as a sequence (b_0, b_1, \ldots, b_d) of elements of \mathbb{Z}_p
 – Let $b(X) = b_0 + b_1X + \cdots + b_dX^d$

• Alice picks a random $x \in \mathbb{Z}_p$ and sends $a^* = a(x)$ and x to Bob

• Bob checks whether $a^* = b(x)$
 – If so, Bob says “equal”
 – If not, Bob says “not equal”
File Comparison Protocol - Analysis

- Alice encodes A as a sequence (a_0, a_1, \ldots, a_d) of elements of \mathbb{Z}_p
 - Let $a(X) = a_0 + a_1X + \cdots + a_dX^d$
- Bob encodes B as a sequence (b_0, b_1, \ldots, b_d) of elements of \mathbb{Z}_p
 - Let $b(X) = b_0 + b_1X + \cdots + b_dX^d$
- Alice picks a random $x \in \mathbb{Z}_p$ and sends $a^* = a(x)$ and x to Bob
- Bob checks whether $a^* = b(x)$

If $A = B$
- ... then $a(X) = b(X)$
- ... then $a^* = a(x) = b(x)$
File Comparison Protocol - Analysis

- Alice encodes A as a sequence $(a_0, a_1, ..., a_d)$ of elements of \mathbb{Z}_p
 - Let $a(X) = a_0 + a_1X + \cdots + a_dX^d$
- Bob encodes B as a sequence $(b_0, b_1, ..., b_d)$ of elements of \mathbb{Z}_p
 - Let $b(X) = b_0 + b_1X + \cdots + b_dX^d$
- Alice picks a random $x \in \mathbb{Z}_p$ and sends $a^* = a(x)$ and x to Bob
- Bob checks whether $a^* = b(x)$

If $A \neq B$

- ... then $a(X) \neq b(X)$
- ... then $c(X) = a(X) - b(X)$
 - non-zero and degree at most d

$\mathbb{P}(a(x) = b(x)) = \mathbb{P}(c(x) = 0) \leq \frac{d}{p}$
Example – Parameters

1GB = 2^{30} bytes = 2^{33} bits, i.e., there are 2^{233} possible files

• Pick p slightly larger than $2^{32} = 2^{25}$
• Then, we can use $d = 2^{28}$
 – Now we have $p^d > 2^{233}$ possible file to encode. (Is enough!)
• Probability that two files are misidentified as identical
 – At most $\frac{d}{p} \leq \frac{2^{28}}{2^{32}} = 2^{-4} = \frac{1}{16}$
• Alice transmits two integers in \mathbb{Z}_p
 – Each takes roughly 32 bits = 4 bytes
More efficiently

• Working with primes is a bit tricky
• Polynomials can e.g., be defined also over appropriate mathematical structure (an “extension field”) where the coefficients are chunks of 8 bytes.
 – Such polynomials can be evaluated super-efficiently
 – Hardware support in modern CPUs.
 – Your phone, your laptop, etc is evaluating such polynomials continuously [Main application: Cryptographic integrity protection of data]
End Class Summary

Here we are
CSE 312 – Exam

Will cover everything from class, including:

• HW 1-8
• Sections
• Applications: Not quite, but ... (see next slide)
 – Not this last week, and a few more things
Applications

- Pairwise-independent hashing
- Naïve Bayes and basic machine learning
- Data compression
- Differential privacy
- Randomized algorithms

Strictly speaking not covered by final, but help practicing materials from class.
Learning tips

• Focus on first principles
 – Especially for discrete probability, what are we really trying to solve?!
 – What is the underlying \((\Omega, \mathbb{P})\)? Helps even when you are not asked explicitly to do. It all boils down to this.

• What can I use, what can I not use?
 – Is independence assumed? Do I need to prove it first?
 – If you use a fact / theorem, always think (and state) why the theorem can be used.
 – Make sure never to leave anything unspecified. For example, if you describe multiple random variables, you have to explicitly say how they are corelated with each other.

• What result would you expect? Is what you get meaningful? In the right range?
Learning tips (cont’d)

- There are tons of resources.
- Textbook covers most, but not all of what we have done.
- Ask if unsure about your own resource for practice.