CSE 312
Foundations of Computing Il

Lecture 27: Randomized Algorithms |

PAUL G. ALLEN SCHOOL Stefano Tessaro
OF COMPUTER SCIENCE & ENGINEERING .
tessaro(@cs.washington.edu

1

Announcements

HW8 due Friday, no extensions

Final instructions have been posted

Practice finals have been posted
— Discussed in Sections on Thursday

Review section on Wednesday
Please complete the class evaluation!

Algorithms can be randomized

Random rand = new Random();
int value = rand.nextInt(50);

Of course, not really random.
But outcome can be
approximate well by
appropriate random variable.

double random = Math.random() * 49 + 1;

Random rand = new SecureRandom();
int value = rand.nextInt(50);

As an aside: For strong
cryptographic random
generator, finding non-random
behavior would be a
breakthrough 3

Randomized Algorithms - Two types

* Las Vegas: Guaranteed correct output
— Running time is a random variable T'(n).

— Complexity measured in terms of E(T(n))

* Monte Carlo: Guaranteed running time

— Qutput is a random variable

— Can make errors
— Quality measured in terms of error probability

Quicksort - Recap i?:;uen;fsgor simplicity no repeated

Algorithm QuickSort(A): [A is array of size n

1) Ifn € {0,1} then return A

2) Choose pivot p from A

3) Let A, = elements of A whichare <p } Can be done withn — 1
4) Let A; = elements of A which are > p comparisons

5) Return QuickSort(4,)||p || QuickSort(4;)

Recursion Tree - Good Pivot

[1) 77 37 57 2’ 8’ 107 4) 15) 6]

} 2, 4] }10 , 15, 6]
[1, 2] [4] [7,6] [15]
7\ O\
[] [2] [] [7]

even split = O(logn) recursion levels

Recursion Tree — Bad Pivot

[1,7,3,5,2,8,10, 4,15, 6]

T

[] [7,3,5,2,8,10, 4,15, 6
[2] [7, 5, 8, 10, 4,15,6

uneven split = (1(n) recursion levels

A Las Vegas Algorithm — Randomized Quicksort

Algorithm QuickSort(A): [[Ais array of size n

1) Ifn € {0,1} then return A

2) Pivot p — random element from A

3) Let A, = elements of A whichare <p } Can be done withn — 1
4) Let A; = elements of A which are > p comparisons

5) Return QuickSort(4,)||p || QuickSort(4;)

Goal - Count comparisons

* T(n) = # of comparisons on input n-element array
— Goal: Compute E(T'(n)) (Approximation of expected runtime)

* e, <e, < < e, aredistinct elements of the array (when sorted)
— X;j = lifelement e; < e; are ever compared, 0 else

— Two elements can be compared at most once (one of them must be a pivot)!
— Therefore: E(T(n)) = E(X;<; Xij) = Xi<; E(Xij) = Xic; P(X;; = 1)

Example:e; = 3,¢; =7

[17 7) 37 57 27 8) 107 47 15’ 6]

/\

[1, 3,2, 4] [7, 10, 15, 6]

Never compared, because first pivot 5 separates
them into two different sub-arrays by being

between 3 and 7.

Therefore: X;; = 0

10

Example:e; = 7,¢; = 10

[17 7’ 37 57 2’ 8) 10) 4) 15) 6]

/\

[1,3, 2, 4] [7, 10,15, 6]

Compared, because on the same side for pivot 5,
then one of them is chosen as pivot.

Therefore: X;; = 1

11

Summarizing

Recall: e; < e, < --- < g, are distinct elements of the array

X;; is determined by following process: Ay = X;; is set after
* Pick (random) pivot p exactly k iterations
* Ifp € [ei, e]-] then

* Ifp=e;orp =e¢;thenX;; =1

* Ifp #e,e thenX;; =0 P(X;; = 1[Ay) =

j—i+1
* Else try another round

2
P(X;;=1) = EIP)(JZR) P(X;j = 1|Ay) = 12P(qu) —]_l+1

12

Randomized Quicksort — Wrapping up

P(X;;=1) = z P(Ay) - P(Xi; = 1|Ay) =

i
4
S

E(T)—ZIP(X =1) = i
W)= 2 P& =U=2, 2, j=i+1
1<J 1=1 j=1+1

n—-1n-i+1 n—1 —

=1 j=1 =1

2
P(Ay) =
12 (Ai) = j—i+1

n
2 1
:22_. <2 Z—:ZZHnSZan~2nlnn
o hmd] J
=1 J=2

13

Monte Carlo Algorithms - Primality Testing

Question: Is an integer N prime?
* |s7 prime?
* |Is 25 prime?
* |Is 23 prime?
* Is 7919 prime?
— Yes! 1000 prime!

* 1s1230186684530117755130494958384962720772853569595334
7921973224521517264005072636575187452021997864693899564749427
7406384592519255732630345373154826850791702612214291346167042
92_1431?1602221240479274737794080665351419597459856902143413
prime:

— No;) [It’s the product of two large primes, very hard to factor!]

14

Primality — Deterministic Complexity

* Trivial algorithm runs in time (roughly) O (N log N)
— Check divisibility by every integer 1 < i < N
— Can be optimized to O (+/N log N) [Why?]
* Breakthrough result (Agrawal-Kayal-Saxena, 2006): Primality
testing in O((log N)”)
— Much better, but still not very practical ...

* Testing primality is very useful in cryptography (and elsewhere)

Note: Deciding whether an integer is prime or not is much easier than
finding the prime factors if it is not prime!

15

Primality - The Miller-Rabin Test Running time can be made

Algorithm IsPrime(N):

s=0,d=N-1
while d is even do

: dzg; s=s+1

(almost) 0(log(N)?%)

— At the end of loop: N — 1 = 2°d

—

Pick uniformly b € {1,2,...,N — 1}

P =

Fori = 1tosdo

- Ift =N —1thenreturn =
- t=t’modN

Return -

Checks whether N — 1 is any of
pe, p2d ptd p2°'d mod N

16

Miller-Rabin Primality Test

__

Theorem. The Miller-Rabin test satisfies the following properties:
+ If Nis prime, then P(IsPrime(N)) = 1
 If Nisnot prime, then P(IsPrime(N)) < 1/4

For better guarantees:
* Repeat k times, return prime only if all tests return prime.
* If N is not prime, prob. of incorrectly identifying it as prime is <
4_—k — 2—2k
* E.g., k = 64, wehave 2714°

17

