CSE 312 Foundations of Computing II

Lecture 27: Randomized Algorithms I

Stefano Tessaro

tessaro@cs.washington.edu

Announcements

- HW8 due Friday, <u>no extensions</u>
- Final instructions have been posted
- Practice finals have been posted
 Discussed in Sections on Thursday
- Review section on Wednesday
- Please complete the class evaluation!

Algorithms can be randomized

Random rand = new Random();
int value = rand.nextInt(50);

Of course, not <u>really</u> random. But outcome can be approximate well by appropriate random variable.

As an aside: For strong cryptographic random generator, finding non-random behavior would be a breakthrough 3

Randomized Algorithms – Two types

- Las Vegas: Guaranteed correct output
 - <u>Running time</u> is a random variable T(n).
 - Complexity measured in terms of $\mathbb{E}(T(n))$
- Monte Carlo: Guaranteed running time
 - <u>Output</u> is a random variable
 - Can make errors
 - Quality measured in terms of error probability

(Assume for simplicity no repeated elements)

// A is array of size n

Algorithm QuickSort(A):

- 1) If $n \in \{0,1\}$ then return A
- 2) Choose <u>pivot</u> *p* from *A*
- 3) Let A_0 = elements of A which are < p
- 4) Let A_1 = elements of A which are > p

5) Return QuickSort(A_0) || p || QuickSort(A_1)

Can be done with n - 1 comparisons

Recursion Tree – Good Pivot

<u>even</u> split = $O(\log n)$ recursion levels

A Las Vegas Algorithm – Randomized Quicksort

Algorithm QuickSort(A):

- 1) If $n \in \{0,1\}$ then return A
- 2) <u>Pivot p random element from A</u>
- 3) Let A_0 = elements of A which are < p
- 4) Let A_1 = elements of A which are > p

5) Return QuickSort(A_0) || p || QuickSort(A_1)

// *A* is array of size *n*

Can be done with n - 1 comparisons

Goal – Count comparisons

- T(n) = # of comparisons on input *n*-element array
 - Goal: Compute $\mathbb{E}(T(n))$ (Approximation of expected runtime)
- $e_1 < e_2 < \cdots < e_n$ are distinct elements of the array (when sorted)
 - $-X_{ij} = 1$ if element $e_i < e_j$ are ever compared, o else
 - Two elements can be compared at most once (one of them must be a pivot)!
 - Therefore: $\mathbb{E}(T(n)) = \mathbb{E}\left(\sum_{i < j} X_{ij}\right) = \sum_{i < j} \mathbb{E}(X_{ij}) = \sum_{i < j} \mathbb{P}(X_{ij} = 1)$

Never compared, because first pivot **5** separates them into two different sub-arrays by being between **3** and **7**.

Therefore: $X_{ij} = 0$

Compared, because on the same side for pivot 5, then one of them is chosen as pivot.

Therefore: $X_{ij} = 1$

Summarizing

Recall: $e_1 < e_2 < \cdots < e_n$ are distinct elements of the array

- X_{ij} is determined by following process:
- Pick (random) pivot p
- If $p \in [e_i, e_j]$ then
 - If $p = e_i$ or $p = e_j$ then $X_{ij} = 1$
 - If $p \neq e_i, e_j$ then $X_{ij} = 0$
- Else try another round

 $A_k = X_{ij}$ is set after exactly *k* iterations

$$\mathbb{P}(X_{ij} = 1 | \mathcal{A}_k) = \frac{2}{j - i + 1}$$

$$\mathbb{P}(X_{ij}=1) = \sum_{k} \mathbb{P}(\mathcal{A}_k) \cdot \mathbb{P}(X_{ij}=1|\mathcal{A}_k) = \frac{2}{j-i+1} \sum_{k} \mathbb{P}(\mathcal{A}_k) = \frac{2}{j-i+1}$$

Randomized Quicksort – Wrapping up

$$\mathbb{P}(X_{ij}=1) = \sum_{k} \mathbb{P}(\mathcal{A}_k) \cdot \mathbb{P}(X_{ij}=1|\mathcal{A}_k) = \frac{2}{j-i+1} \sum_{k} \mathbb{P}(\mathcal{A}_k) = \frac{2}{j-i+1}$$

$$\mathbb{E}(T(n)) = \sum_{i < j} \mathbb{P}(X_{ij} = 1) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$
$$= \sum_{i=1}^{n-1} \sum_{j=2}^{n-i+1} \frac{2}{j} \le 2 \sum_{i=1}^{n-1} \sum_{j=1}^{n} \frac{1}{j} = 2 \sum_{i=1}^{n-1} H_n \le 2nH_n \sim 2n\ln n$$

13

Monte Carlo Algorithms – Primality Testing

Question: Is an integer *N* prime?

- Is 7 prime?
- Is 25 prime?
- Is 23 prime?
- Is 7919 prime?
 - Yes! 1000th prime!
- Is 1230186684530117755130494958384962720772853569595334 7921973224521517264005072636575187452021997864693899564749427 7406384592519255732630345373154826850791702612214291346167042 9214311602221240479274737794080665351419597459856902143413 prime?
 - No;) [It's the product of two large primes, very hard to factor!]

Primality – Deterministic Complexity

- Trivial algorithm runs in time (roughly) $O(N \log N)$
 - Check divisibility by every integer 1 < i < N
 - Can be optimized to $O(\sqrt{N} \log N)$ [Why?]
- Breakthrough result (Agrawal–Kayal–Saxena, 2006): Primality testing in $O((\log N)^{7.5})$

– Much better, but still not very practical ...

• Testing primality is very useful in cryptography (and elsewhere)

Note: Deciding whether an integer is prime or not is much easier than finding the prime factors if it is not prime!

Primality – The Miller-Rabin Test

Running time can be made (almost) $O(\log(N)^2)$

Algorithm IsPrime(N):

- s = 0, d = N 1
- while *d* is even **do**

$$-d = \frac{d}{2}; \quad s = s + 1$$

- Pick uniformly $b \in \{1, 2, \dots, N-1\}$
- $t = b^d$
- For *i* = 1 to *s* do
 - If t = N 1 then return \downarrow
 - $t = t^2 \mod N$

- Return 👎

Checks whether N - 1 is any of b^d , b^{2d} , b^{4d} , ..., $b^{2^{s-1}d} \mod N$

At the end of loop: $N - 1 = 2^{s}d$

Miller-Rabin Primality Test

Theorem. The Miller-Rabin test satisfies the following properties:

- If N is prime, then $\mathbb{P}(\texttt{IsPrime}(N)) = 1$
- If *N* is not prime, then $\mathbb{P}(\texttt{IsPrime}(N)) \le 1/4$

For better guarantees:

- Repeat *k* times, return prime only if all tests return prime.
- If N is not prime, prob. of incorrectly identifying it as prime is $\leq 4^{-k} = 2^{-2k}$
 - E.g., k = 64, we have 2^{-128}