
CSE 312

Foundations of Computing II
Lecture 27: Randomized Algorithms I

Stefano Tessaro
tessaro@cs.washington.edu

1

Announcements

• HW8 due Friday, no extensions
• Final instructions have been posted
• Practice finals have been posted
– Discussed in Sections on Thursday

• Review section on Wednesday
• Please complete the class evaluation!

2

Algorithms can be randomized

3

Random rand = new Random();
int value = rand.nextInt(50);

double random = Math.random() * 49 + 1;

Of course, not really random.
But outcome can be
approximate well by
appropriate random variable.

Random rand = new SecureRandom();
int value = rand.nextInt(50);

As an aside: For strong
cryptographic random
generator, finding non-random
behavior would be a
breakthrough

Randomized Algorithms – Two types

• Las Vegas: Guaranteed correct output
– Running time is a random variable !(#).

– Complexity measured in terms of % ! #

• Monte Carlo: Guaranteed running time
– Output is a random variable
– Can make errors
– Quality measured in terms of error probability

4

Quicksort – Recap

Algorithm QuickSort(&): // & is array of size #
1) If # ∈ {0,1} then return &
2) Choose pivot - from &
3) Let &. = elements of & which are < -
4) Let &1 = elements of & which are > -
5) Return QuickSort(&.) || - || QuickSort(&1)

5

Can be done with # − 1
comparisons

(Assume for simplicity no repeated
elements)

Recursion Tree – Good Pivot

6

[1, 7, 3, 5, 2, 8, 10, 4, 15, 6]

[1, 3, 2, 4] [7, 10, 15, 6]

[1, 2] [4]

[2][]

[7, 6] [15]

[7][]

even split = O(log #) recursion levels

Recursion Tree – Bad Pivot

7

[1, 7, 3, 5, 2, 8, 10, 4, 15, 6]

[] [7, 3, 5, 2, 8, 10, 4, 15, 6]

[7, 5, 8, 10, 4, 15, 6][2]

[7, 5, 8, 10, 15, 6][]

[5]
[7, 8, 10, 15]

…uneven split = Ω(#) recursion levels

A Las Vegas Algorithm – Randomized Quicksort

Algorithm QuickSort(&): // & is array of size #
1) If # ∈ {0,1} then return &
2) Pivot - – random element from &
3) Let &. = elements of & which are < -
4) Let &1 = elements of & which are > -
5) Return QuickSort(&.) || - || QuickSort(&1)

8

Can be done with # − 1
comparisons

Goal – Count comparisons

• !(#) = # of comparisons on input #-element array
– Goal: Compute %(!(#)) (Approximation of expected runtime)

• 91 < 9: < ⋯ < 9< are distinct elements of the array (when sorted)
– =>? = 1 if element 9> < 9? are ever compared, 0 else
– Two elements can be compared at most once (one of them must be a pivot)!

– Therefore: % !(#) = % ∑>A? =>? = ∑>A? % =>? = ∑>A? ℙ =>? = 1

9

Example: 9> = C, 9? = D

10

[1, 7, 3, 5, 2, 8, 10, 4, 15, 6]

[1, 3, 2, 4] [7, 10, 15, 6]

Never compared, because first pivot 5 separates
them into two different sub-arrays by being
between C and D.

Therefore: =>? = 0

Example: 9> = D, 9? = EF

11

[1, 7, 3, 5, 2, 8, 10, 4, 15, 6]

[1, 3, 2, 4] [7, 10, 15, 6]

Compared, because on the same side for pivot 5,
then one of them is chosen as pivot.

Therefore: =>? = 1

Summarizing

Recall: 91 < 9: < ⋯ < 9< are distinct elements of the array

12

GH = =>? is set after
exactly I iterations

ℙ(=>? = 1|GH) =
2

L − M + 1

ℙ =>? = 1 =O
H

ℙ GH ⋅ ℙ(=>? = 1|GH) =
2

L − M + 1
O
H

ℙ(GH) =
2

L − M + 1

=>? is determined by following process:
• Pick (random) pivot -
• If - ∈ 9>, 9? then
• If - = 9> or - = 9? then =>? = 1
• If - ≠ 9>, 9? then =>? = 0

• Else try another round

Randomized Quicksort – Wrapping up

13

ℙ =>? = 1 =O
H

ℙ GH ⋅ ℙ(=>? = 1|GH) =
2

L − M + 1
O
H

ℙ(GH) =
2

L − M + 1

% !(#) =O
>A?

ℙ =>? = 1 = O
>R1

<S1

O
?R>T1

<
2

L − M + 1

= O
>R1

<S1

O
?R:

<S>T1
2
L

≤ 2O
>R1

<S1

O
?R1

<
1
L
= 2O

>R1

<S1

V< ≤ 2#V< ∼ 2# ln #

Monte Carlo Algorithms – Primality Testing

Question: Is an integer Y prime?
• Is 7 prime?
• Is 25 prime?
• Is 23 prime?
• Is 7919 prime?
– Yes! 1000th prime!

• Is 1230186684530117755130494958384962720772853569595334
7921973224521517264005072636575187452021997864693899564749427
7406384592519255732630345373154826850791702612214291346167042
9214311602221240479274737794080665351419597459856902143413
prime?
– No ;) [It’s the product of two large primes, very hard to factor!]

14

Primality – Deterministic Complexity

• Trivial algorithm runs in time (roughly) Z(Y logY)
– Check divisibility by every integer 1 < M < Y

– Can be optimized to Z(Y logY) [Why?]

• Breakthrough result (Agrawal–Kayal–Saxena, 2006): Primality
testing in Z(logY [.])
– Much better, but still not very practical …

• Testing primality is very useful in cryptography (and elsewhere)

Note: Deciding whether an integer is prime or not is much easier than
finding the prime factors if it is not prime!

15

Primality – The Miller-Rabin Test

16

Algorithm IsPrime(Y):
- ^ = 0, _ = Y − 1
- while _ is even do

- _ =
`
:

; ^ = ^ + 1

- Pick uniformly a ∈ {1,2, … ,Y − 1}
- c = a`

- For M = 1 to ^ do
- If c = Y − 1 then return!
- c = c: mod Y

- Return"

At the end of loop: Y − 1 = 2f_

Checks whether Y − 1 is any of
a` , a:`, ag`, … , a:

hij` mod Y

Running time can be made
(almost) Z(log Y :)

Miller-Rabin Primality Test

17

Theorem. The Miller-Rabin test satisfies the following properties:

• If Y is prime, then ℙ(IsPrime(Y)) = 1

• If Y is not prime, then ℙ(IsPrime(Y)) ≤ 1/4

For better guarantees:
• Repeat I times, return prime only if all tests return prime.
• If Y is not prime, prob. of incorrectly identifying it as prime is ≤
4SH = 2S:H

• E.g., I = 64, we have 2S1:n

