CSE 312

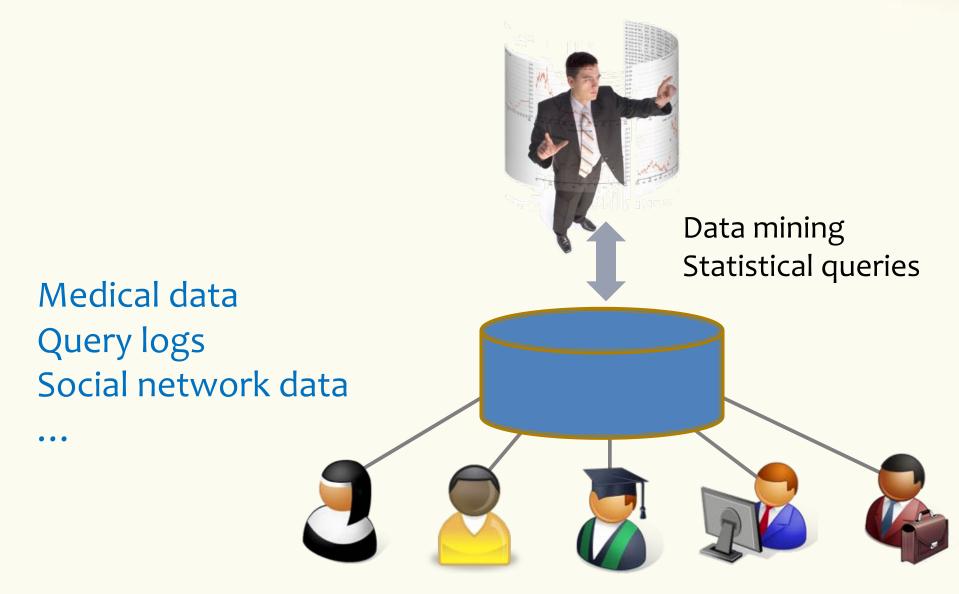
Foundations of Computing II

Lecture 26: Applications – Differential Privacy

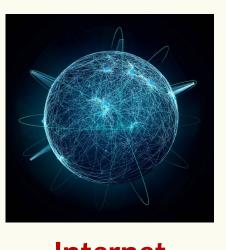
Stefano Tessaro

tessaro@cs.washington.edu

Setting



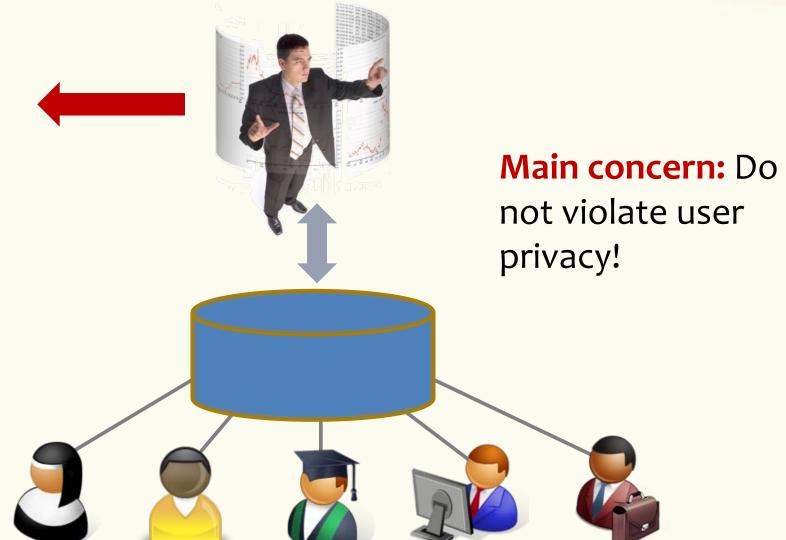
Setting – Data Release



Internet

Publish:

Aggregated data, e.g., outcome of medical study, research paper, ...



Example – Linkage Attack

- The Commonwealth of Massachusetts Group Insurance Commission (GIC) releases 135,000 records of patient encounters, each with 100 attributes
 - Relevant attributes removed, but ZIP, birth date, gender available
 - Considered "safe" practice
- Public voter registration record
 - Contain, among others, name, address, ZIP, birth date, gender
- Allowed identification of medical records of William Weld, governor of MA at that time
 - He was the only man in his zip code with his birth date …
 - +More attacks! (cf. Netflix grand prize challenge!)

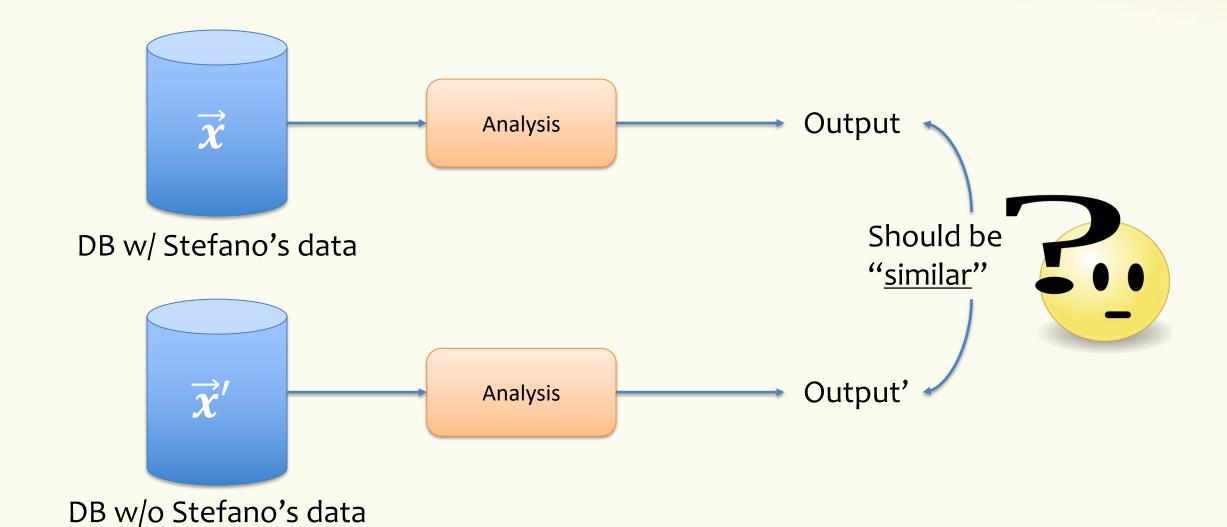
One way out? Differential Privacy

- A formal definition of privacy
 - Satisfied in systems deployed by Google, Uber, Apple, ...
- Will be used by 2020 census
- Idea: Any information-related risk to a person should not change significantly as a result of that person's information being included, or not, in the analysis.

Ideal Privacy Fact. This notion of privacy is unattainable! Output **Analysis Ideally:** Should be DB w/ Stefano's data identical! Output' **Analysis**

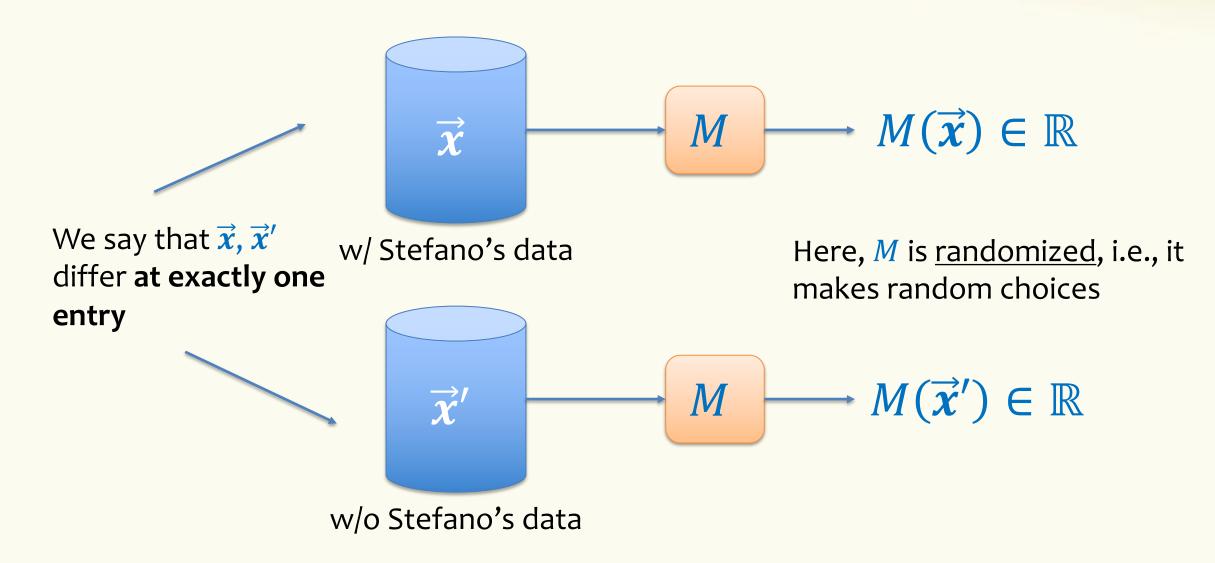
DB w/o Stefano's data

More Realistic Privacy Goal



Setting – Formal

M = mechanism



Setting – Mechanism

Definition. A mechanism M is ϵ -differentially private if for all subsets* $T \subseteq \mathbb{R}$, and for all databases \vec{x}, \vec{x}' which differ at exactly one entry,

$$\mathbb{P}(M(\vec{x}) \in T) \le e^{\epsilon} \, \mathbb{P}(M(\vec{x}') \in T)$$

Dwork, McSherry, Nissim, Smith, '06

Think:
$$\epsilon = \frac{1}{100}$$
 or $\epsilon = \frac{1}{10}$

Example – Counting Queries

- DB is a vector $\vec{x} = (x_1, ..., x_n)$ where $x_1, ..., x_n \in \{0,1\}$ - E.g., $x_i = 1$ if individual i has diseases
- Query: $q(\vec{x}) = \sum_{i=1}^{n} x_i$

Here: DB proximity means vectors differ at one single coordinate.

 $-x_i = 0$ means patient does not have disease or patient data wasn't recorded.

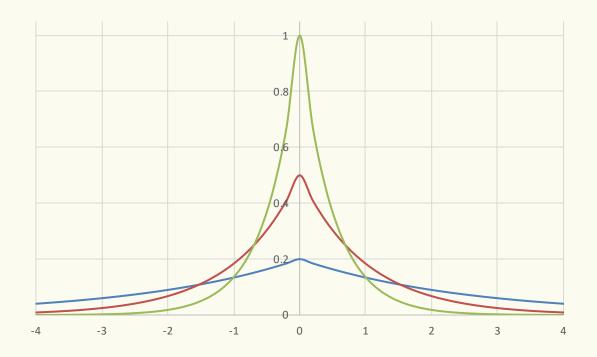
A solution – Laplacian Noise

Mechanism M taking input $\vec{x} = (x_1, ..., x_n)$:

• Return $M(\vec{x}) = \sum_{i=1}^{n} x_i + Y$

"Laplacian mechanism with parameter ϵ "

Here, Y follows a Laplace distribution with parameter ϵ



$$f_Y(x) = \frac{\epsilon}{2} e^{-\epsilon|x|}$$

$$\mathbb{E}(Y)=0$$

$$Var(Y) = \frac{2}{\epsilon^2}$$

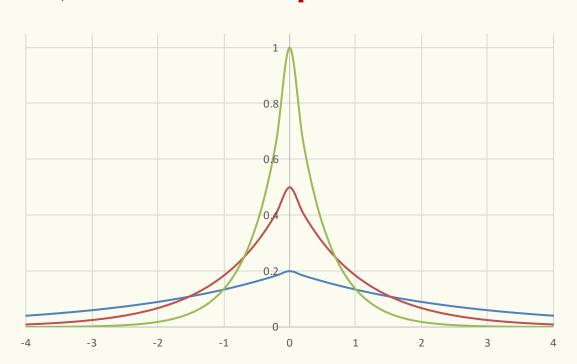
Better Solution – Laplacian Noise

Mechanism *M* taking input $\vec{x} = (x_1, ..., x_n)$:

• Return $M(\vec{x}) = \sum_{i=1}^{n} x_i + Y$

"Laplacian mechanism with parameter ϵ "

Here, Y follows a Laplace distribution with parameter ϵ



$$f_Y(x) = \frac{\epsilon}{2} e^{-\epsilon|x|}$$

Key property: For all x, Δ

$$\frac{f_Y(x)}{f_Y(x+\Delta)} \le e^{\epsilon \Delta}$$

Laplacian Mechanism – Privacy

Theorem. The Laplacian Mechanism with parameter ϵ satisfies ϵ differential privacy

$$\vec{x}$$
, \vec{x}' differ at one entry

$$\vec{x}$$
, \vec{x}' differ at one entry
$$\Delta = \sum_{i=1}^{\infty} x_i - \sum_{i=1}^{\infty} x_i \quad |\Delta| \le 1$$

$$\mathbb{P}(M(\vec{x}) \in [a,b]) = \mathbb{P}(s+Y \in [a,b]) = \int_{a}^{b} f_{Y}(x-s) dx$$

$$= \int_{a}^{b} f_{Y}(x-s'+\Delta) dx \le e^{\epsilon \Delta} \int_{a}^{b} f_{Y}(x-s') dx \le e^{\epsilon} \int_{a}^{b} f_{Y}(x-s') dx$$

$$\le e^{\epsilon} \mathbb{P}(M(\vec{x}') \in [a,b])$$

How Accurate is Laplacian Mechanism?

Let's look at $\sum_{i=1}^{n} x_i + Y$

•
$$\mathbb{E}(\sum_{i=1}^{n} x_i + Y) = \sum_{i=1}^{n} x_i + \mathbb{E}(Y) = \sum_{i=1}^{n} x_i$$

•
$$Var(\sum_{i=1}^{n} x_i + Y) = Var(Y) = \frac{2}{\epsilon^2}$$

This is accurate enough for large enough n!

Differential Privacy – What else can we compute?

- Statistics: counts, mean, median, histograms, boxplots, etc.
- Machine learning: classification, regression, clustering, distribution learning, etc.

•

Differential Privacy – Nice Properties

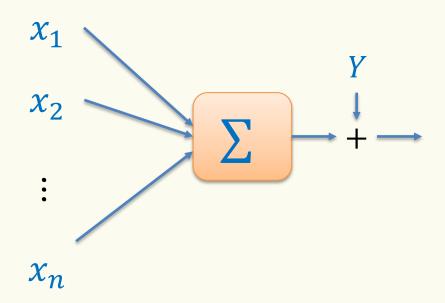
• Group privacy: If M is ϵ -differentially private, then for all $T \subseteq \mathbb{R}$, and for all databases \vec{x}, \vec{x}' which differ at (at most) k entries,

$$\mathbb{P}(M(\vec{x}) \in T) \le e^{k\epsilon} \, \mathbb{P}(M(\vec{x}') \in T)$$

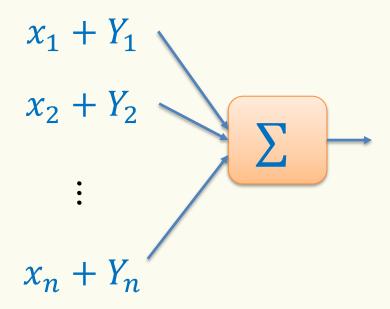
- Composition: If we apply two ϵ -DP mechanisms to data, combined output is 2ϵ -DP.
 - How much can we allow ϵ to grow? (So-called "privacy budget.")
- Post-processing: Postprocessing does not decrease privacy.

Local Differential Privacy

Laplacian Mechanism



What if we don't trust aggregator?



Solution: Add noise <u>locally!</u>

Example – Randomize Response

Mechanism M taking input $\vec{x} = (x_1, ..., x_n)$:

• For all i = 1, ..., n:

$$-y_i = x_i$$
 w/ probability $\frac{1}{2} + \alpha$, and $y_i = 1 - x_i$ w/ probability $\frac{1}{2} - \alpha$.

$$-\hat{x}_i = \frac{y_i - \frac{1}{2} + \alpha}{2\alpha}$$

• Return $M(\vec{x}) = \sum_{i=1}^{n} \hat{x}_i$

S. L. Warner. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association, 60(309):63–69, 1965

Example – Randomize Response

Mechanism *M* taking input $\vec{x} = (x_1, ..., x_n)$:

- For all i = 1, ..., n:
 - $-y_i=x_i$ w/ probability $\frac{1}{2}+\alpha$, and $y_i=1-x_i$ w/ probability $\frac{1}{2}-\alpha$.

$$- \hat{x}_i = \frac{y_i - \frac{1}{2} + \alpha}{2\alpha}$$

• Return $M(\vec{x}) = \sum_{i=1}^{n} \hat{x}_i$

Theorem. Randomized Response with parameter α satisfies ϵ -differential privacy, if $\alpha = \frac{e^{\epsilon}-1}{e^{\epsilon}+1}$.

Fact 1.
$$\mathbb{E}(M(\overrightarrow{x})) = \sum_{i=1}^{n} x_i$$

Fact 2.
$$Var(M(\vec{x})) \approx \frac{n}{\epsilon^2}$$

Differential Privacy – Challenges

- Accuracy vs. privacy: How do we choose *∈*?
 - Practical applications tend to err in favor of accuracy.
 - See e.g. https://arxiv.org/abs/1709.02753
- Fairness: Differential privacy hides contribution of small groups, by design
 - How do we avoid excluding minorities?
 - Very hard problem!

Literature

- Cynthia Dwork and Aaron Roth. "The Algorithmic Foundations of Differential Privacy".
 - https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
- https://privacytools.seas.harvard.edu/