CSE 312 Foundations of Computing II

Lecture 25: Biased Estimation, Confidence Interval

Stefano Tessaro

tessaro@cs.washington.edu

A Warning

- Statistics literature full of (somewhat redundant) jargon
- Don't get confused when looking up extra materials
 Do refer to the slides for what you <u>actually</u> need to know

Parameter Estimation – Workflow

 θ = <u>unknown</u> parameter

Maximum Likelihood Estimation (MLE). Given data $x_1, ..., x_n$, find $\hat{\theta} = \hat{\theta}(x_1, ..., x_n)$ ("the MLE") such that $L(x_1, ..., x_n | \hat{\theta})$ is maximized!

Likelihood – Continuous Case

Definition. The **likelihood** of independent observations x_1, \dots, x_n is $L(x_1, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i | \theta)$

Normal outcomes x_1, \ldots, x_n

MLE estimator for **expectation**

MLE estimator for **variance**

Example – Consistency

Normal outcomes $X_1, ..., X_n$ iid according to $\mathcal{N}(\mu, \sigma^2)$ Assume: $\sigma^2 > 0$

Sample variance – Unbiased!

 $\widehat{\Theta}_{\sigma^2}$ converges to same value as S_n^2 , i.e., σ^2 , as $n \to \infty$.

 Θ_{σ^2} is "consistent"

Why is the estimator consistent, but biased?

linearity

$$\mathbb{E}(\widehat{\Theta}_{\sigma^2}) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}\left[\left(X_i - \widehat{\Theta}_1 \right)^2 \right] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}\left[\left(X_i - \frac{1}{n} \sum_{j=1}^n X_j \right)^2 \right]$$
$$= \frac{1}{n} \sum_{i=1}^n \mathbb{E}\left[X_i^2 - \frac{2}{n} X_i \sum_{j=1}^n X_j + \frac{1}{n^2} \sum_{j=1}^n X_j \sum_{k=1}^n X_k \right]$$

. . .

Why is the estimator consistent, but biased?

. . .

linearity $\mathbb{E}(\widehat{\Theta}_{\sigma^2}) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}\left[\left(X_i - \widehat{\Theta}_1 \right)^2 \right] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}\left[\left(X_i - \frac{1}{n} \sum_{j=1}^n X_j \right)^2 \right]$

$$= \left(1 - \frac{1}{n}\right)\sigma^2 = \frac{n-1}{n}\sigma^2 \to \sigma^2 \text{ for } n \to \infty$$

Therefore:
$$\mathbb{E}(S_n^2) = \frac{1}{n-1} \sum_{i=1}^n \mathbb{E}\left[\left(X_i - \widehat{\Theta}_1\right)^2\right] = \frac{n}{n-1} \mathbb{E}\left(\widehat{\Theta}_{\sigma^2}\right) = \sigma^2$$

Bessel's correction

Estimation – Confidence Intervals

Unbiasedness/consistency are not sufficient by themseleves.

- We want $\mathbb{P}(\widehat{\Theta}_n = \theta) = 1$
 - At least as $n \rightarrow \infty$
 - Note that $\widehat{\Theta}_n$ is continuous for Gaussian, so $\mathbb{P}(\widehat{\Theta}_n = \theta) = 0$
- <u>Relaxation</u>: Find <u>smallest</u> Δ such that $\mathbb{P}(|\widehat{\Theta}_n \theta| \le \Delta) \ge p$ for a given p
 - We say that Δ gives us the *p*-confidence interval
 - e.g., 95%-confidence interval means p = 0.95

Mean Estimator for Normal – Known Variance

Normal outcomes: $X_1, ..., X_n$ iid according to $\mathcal{N}(\mu, \sigma^2)$, known σ^2 .

 $\widehat{\Theta}_{\mu,n} = \frac{\sum_{i=1}^{n} X_i}{n}$ **Q:** which distribution?

A: Normal!

• Expectation
$$\frac{1}{n}(n \cdot \mu) = \mu$$

• variance $\frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$

Therefore:
$$\frac{\widehat{\Theta}_{\mu,n}-\mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$$

Mean Estimator for Normal – Known Variance

Normal outcomes: $X_1, ..., X_n$ iid according to $\mathcal{N}(\mu, \sigma^2)$, known σ^2 .

Equivalently: $\mathbb{P}(|\widehat{\Theta}_{\mu,n} - \mu| < z\sigma/\sqrt{n}) = 1 - 2\Phi(-z)$

E.g., $\Phi(-1.96) \approx 5\% \rightarrow \text{Estimate is within } \Delta = 1.96\sigma/\sqrt{n} \text{ of } \mu \text{ with probability } \approx 95\%$ (i.e., " Δ is the 95%-confidence interval")

Mean Estimator for Normal – <u>Unknown Variance</u>

Normal outcomes: $X_1, ..., X_n$ iid according to $\mathcal{N}(\mu, \sigma^2)$, <u>unknown</u> σ^2 .

$$\mathbb{P}\left(\left|\widehat{\Theta}_{\mu,n}-\mu\right| < \frac{z\sigma}{\sqrt{n}}\right) = 1 - 2\Phi(-z)$$

- Still true, but not that useful, as we cannot evaluate σ
- What about using $S_n = \sqrt{S_n^2}$ instead?

$$\mathbb{P}\left(\left|\widehat{\Theta}_{\mu,n}-\mu\right|<\frac{zS_n}{\sqrt{n}}\right)=1-2\Phi(-z)?$$

Not true!

$$\frac{\widehat{\Theta}_{\mu,n} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1) \qquad \frac{\widehat{\Theta}_{\mu,n} - \mu}{S_n/\sqrt{n}} \sim \text{t-distribution with } n - 1 \text{ degrees of freedom}$$

Student's t-Distribution

Parametrized by $\nu =$ degrees of freedom

Student,"The probable error of a mean". Biometrika 1908.

"Student" was a pseudonym for William Gosset

- Worked for A. Guinness & Son
- Investigated e.g. brewing and barley yields
- Wasn't allowed to publish with real name

Source: Wikipedia

Mean Estimator for Normal – <u>Unknown Variance</u>

Therefore:
$$\mathbb{P}(|\widehat{\Theta}_{\mu,n} - \mu| < zS_n/\sqrt{n}) = 1 - 2\Psi_{n-1}(-z)$$

E.g., $\Psi_9^{-1}(0.05) \approx 2.26 \rightarrow \text{Estimate is within } 2.26S_n/\sqrt{n} \text{ of } \mu \text{ with}$ probability $\approx 95\%$