Lecture 25: Biased Estimation, Confidence Interval

Stefano Tessaro
tessaro@cs.washington.edu
A Warning

• Statistics literature full of (somewhat redundant) jargon
• Don’t get confused when looking up extra materials
 – Do refer to the slides for what you actually need to know
Parameter Estimation – Workflow

Distribution $\mathbb{P}(x|\theta)$ → Independent samples x_1, \ldots, x_n from $\mathbb{P}(x|\theta)$ → Algorithm

$\theta = \text{unknown parameter}$

Maximum Likelihood Estimation (MLE). Given data x_1, \ldots, x_n, find

$\hat{\theta} = \hat{\theta}(x_1, \ldots, x_n)$ (“the MLE”) such that $L(x_1, \ldots, x_n|\hat{\theta})$ is maximized!
Likelihood – Continuous Case

Definition. The likelihood of independent observations x_1, \ldots, x_n is

$$L(x_1, \ldots, x_n | \theta) = \prod_{i=1}^{n} f(x_i | \theta)$$

Normal outcomes x_1, \ldots, x_n

$$\hat{\theta}_\mu = \frac{\sum_{i=1}^{n} x_i}{n}$$

MLE estimator for expectation

$$\hat{\theta}_{\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\theta}_\mu)^2$$

MLE estimator for variance
Definition. An estimator is **unbiased** if $\mathbb{E}(\hat{\theta}_n) = \theta$ for all $n \geq 1$.

Definition. An estimator is **consistent** if $\lim_{n \to \infty} \mathbb{E}(\hat{\theta}_n) = \theta$.

Theorem. MLE estimators are consistent. (But not necessarily unbiased)
Example – Consistency

Normal outcomes \(X_1, \ldots, X_n\) iid according to \(\mathcal{N}(\mu, \sigma^2)\)

Assume: \(\sigma^2 > 0\)

\[
\hat{\Theta}_{\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \Theta_{\mu})^2
\]

Population variance – Biased!

\[
S_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \hat{\Theta}_{\mu})^2
\]

Sample variance – Unbiased!

\(\hat{\Theta}_{\sigma^2}\) converges to same value as \(S_n^2\), i.e., \(\sigma^2\), as \(n \to \infty\).

\(\hat{\Theta}_{\sigma^2}\) is “consistent”
Why is the estimator consistent, but biased?

\[
E(\hat{\Theta}_\sigma^2) = \frac{1}{n} \sum_{i=1}^{n} E[(X_i - \hat{\Theta}_1)^2] = \frac{1}{n} \sum_{i=1}^{n} E\left[\left(X_i - \frac{1}{n} \sum_{j=1}^{n} X_j\right)^2\right]
\]

\[
= \frac{1}{n} \sum_{i=1}^{n} E\left[X_i^2 - \frac{2}{n} X_i \sum_{j=1}^{n} X_j + \frac{1}{n^2} \sum_{j=1}^{n} X_j \sum_{k=1}^{n} X_k\right]
\]

...
Why is the estimator consistent, but biased?

\[\mathbb{E}(\hat{\Theta}_{\sigma^2}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left[(X_i - \hat{\Theta}_1)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left[\left(X_i - \frac{1}{n} \sum_{j=1}^{n} X_j \right)^2 \right] \]

\[= \left(1 - \frac{1}{n} \right) \sigma^2 = \frac{n-1}{n} \sigma^2 \rightarrow \sigma^2 \text{ for } n \rightarrow \infty \]

Therefore: \[\mathbb{E}(S_n^2) = \frac{1}{n-1} \sum_{i=1}^{n} \mathbb{E} \left[(X_i - \hat{\Theta}_1)^2 \right] = \frac{n}{n-1} \mathbb{E}(\hat{\Theta}_{\sigma^2}) = \sigma^2 \]

Bessel's correction
Unbiasedness/consistency are not sufficient by themselves.

• We want $\mathbb{P}(\hat{\theta}_n = \theta) = 1$
 – At least as $n \to \infty$
 – Note that $\hat{\theta}_n$ is continuous for Gaussian, so $\mathbb{P}(\hat{\theta}_n = \theta) = 0$

• Relaxation: Find smallest Δ such that $\mathbb{P}(|\hat{\theta}_n - \theta| \leq \Delta) \geq p$
 for a given p
 – We say that Δ gives us the p-confidence interval
 – e.g., 95%-confidence interval means $p = 0.95$
Mean Estimator for Normal – Known Variance

Normal outcomes: X_1, \ldots, X_n iid according to $\mathcal{N}(\mu, \sigma^2)$, known σ^2.

$$\hat{\Theta}_{\mu,n} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Q: which distribution?

A: Normal!

• Expectation $\frac{1}{n} (n \cdot \mu) = \mu$

• Variance $\frac{1}{n^2} n \sigma^2 = \frac{\sigma^2}{n}$

Therefore: $\frac{\hat{\Theta}_{\mu,n} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$
Mean Estimator for Normal – Known Variance

Normal outcomes: \(X_1, \ldots, X_n \) iid according to \(\mathcal{N}(\mu, \sigma^2) \), known \(\sigma^2 \).

\[
\hat{\Theta}_{\mu,n} = \frac{\sum_{i=1}^{n} X_i}{n} \quad \frac{\hat{\Theta}_{\mu,n} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)
\]

\[
\mathbb{P}\left(-z < \frac{\hat{\Theta}_{\mu,n} - \mu}{\sigma/\sqrt{n}} < z\right) = \Phi(z) - \Phi(-z) = 1 - 2\Phi(-z)
\]

Equivalently: \(\mathbb{P}\left(|\hat{\Theta}_{\mu,n} - \mu| < z\sigma/\sqrt{n}\right) = 1 - 2\Phi(-z) \)

E.g., \(\Phi(-1.96) \approx 5\% \rightarrow \text{Estimate is within } \Delta = 1.96\sigma/\sqrt{n} \text{ of } \mu \text{ with probability } \approx 95\% \) (i.e., “\(\Delta \) is the 95%-confidence interval”)

Mean Estimator for Normal – **Unknown Variance**

Normal outcomes: X_1, \ldots, X_n iid according to $\mathcal{N}(\mu, \sigma^2)$, unknown σ^2.

$$
\mathbb{P} \left(\left| \hat{\Theta}_{\mu,n} - \mu \right| < \frac{z\sigma}{\sqrt{n}} \right) = 1 - 2\Phi(-z)
$$

• Still true, but not that useful, as we cannot evaluate σ
• What about using $S_n = \sqrt{\frac{S^2}{n}}$ instead?

$$
\mathbb{P} \left(\left| \hat{\Theta}_{\mu,n} - \mu \right| < \frac{zS_n}{\sqrt{n}} \right) = 1 - 2\Phi(-z) \quad ?
$$

• **Not true!**

$$
\frac{\hat{\Theta}_{\mu,n} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1) \quad \frac{\hat{\Theta}_{\mu,n} - \mu}{S_n/\sqrt{n}} \sim \text{t-distribution with } n - 1 \text{ degrees of freedom}
$$
Student’s t-Distribution

Parametrized by $\nu = \text{degrees of freedom}$

Notation: $\Psi_\nu(z)$ cdf of t-distribution with ν dof’s.

Student, "The probable error of a mean". Biometrika 1908.
”Student” was a pseudonym for William Gosset

• Worked for A. Guinness & Son
• Investigated e.g. brewing and barley yields
• Wasn’t allowed to publish with real name

Mean Estimator for Normal – Unknown Variance

Therefore: \(\mathbb{P}(|\hat{\Theta}_{\mu,n} - \mu| < zS_n/\sqrt{n}) = 1 - 2\Psi_{n-1}(-z) \)

E.g., \(\Psi_9^{-1}(0.05) \approx 2.26 \rightarrow \) Estimate is within \(2.26S_n/\sqrt{n} \) of \(\mu \) with probability \(\approx 95\% \)