CSE 312 Foundations of Computing II

Lecture 23: More on CLT + Parameter Estimation I

tessaro@cs.washington.edu

The CLT – Recap

Theorem. (Central Limit Theorem) The CDF of Y_n converges to the CDF of the standard normal $\mathcal{N}(0,1)$, i.e.,

$$\lim_{n \to \infty} \mathbb{P}(Y_n \le y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-x^2/2} \mathrm{d}x$$

$$Y_n = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$$

 X_1, \ldots, X_n iid with mean μ and variance σ^2

One main application: (Normal) approximation of probabilities

Example – Recap

 $\mathbb{P}(X \le 0.7n)$

We flip *n* independent coins, heads with probability p = 0.75. X = # heads $\mu = \mathbb{E}(X) = 0.75n$ $\sigma^2 = Var(X) = 0.1875n$

n	exact	$\mathcal{N}ig(oldsymbol{\mu}, oldsymbol{\sigma}^2ig)$ approx
10	0.4744072	0.357500327
20	0.38282735	0.302788308
50	0.25191886	0.207108089
100	0.14954105	0.124106539
200	0.06247223	0.051235217
1000	0.00019359	0.000130365

Example – Bad Approximation

Fair coin flipped (independently) **40** times. Probability of **20** or **21** heads?

Exact.
$$\mathbb{P}(X \in \{20, 21\}) = \left[\binom{40}{20} + \binom{40}{21}\right] \left(\frac{1}{2}\right)^{40} \approx 0.2448$$

Approx.
$$\mathbb{P}(20 \le X \le 21) = \Phi\left(\frac{20 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} \le \frac{21 - 20}{\sqrt{10}}\right)$$

 $\approx \Phi\left(0 \le \frac{X - 20}{\sqrt{10}} \le 0.32\right)$
 $= \Phi(0.32) - \Phi(0) \approx 0.1241$

Example – Even Worse Approximation

Fair coin flipped (independently) **40** times. Probability of **20** heads?

Exact.
$$\mathbb{P}(X = 20) = \binom{40}{20} \left(\frac{1}{2}\right)^{40} \approx 0.1254$$

Approx. $\mathbb{P}(20 \le X \le 20) = 0$ (2)

Solution – Continuity Correction

Round to next integer!

To estimate probability that discrete RV lands in (integer) interval $\{a, \dots, b\}$, compute probability continuous approximation lands in interval $[a - \frac{1}{2}, b + \frac{1}{2}]$

Example – Continuity Correction

Fair coin flipped (independently) **40** times. Probability of **20** or **21** heads?

Exact.
$$\mathbb{P}(X \in \{20, 21\}) = \left[\binom{40}{20} + \binom{40}{21}\right] \left(\frac{1}{2}\right)^{40} \approx \boxed{0.2448}$$

Approx. $\mathbb{P}(19.5 \le X \le 21.5) = \Phi\left(\frac{19.5 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} \le \frac{21.5 - 20}{\sqrt{10}}\right)$ $\approx \Phi\left(-0.16 \le \frac{X - 20}{\sqrt{10}} \le 0.47\right)$ $= \Phi(-0.16) - \Phi(0.47) \approx 0.2452$

Example – Continuity Correction

Fair coin flipped (independently) **40** times. Probability of **20** heads?

Exact.
$$\mathbb{P}(X = 20) = \binom{40}{20} \left(\frac{1}{2}\right)^{40} \approx 0.1254$$

Approx. $\mathbb{P}(19.5 \le X \le 21.5) = \Phi\left(\frac{19.5 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} \le \frac{20.5 - 20}{\sqrt{10}}\right)$ $\approx \Phi\left(-0.16 \le \frac{X - 20}{\sqrt{10}} \le 0.16\right)$ $= \Phi(-0.16) - \Phi(0.16) \approx 0.1272$

(Weak) Law of Large Numbers

Theorem. (Central Limit Theorem) The CDF of Y_n converges to the CDF of the standard normal $\mathcal{N}(0,1)$, i.e.,

$$\lim_{n \to \infty} \mathbb{P}(Y_n \le y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-x^2/2} \mathrm{d}x$$

$$Y_n = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$$

 X_1, \ldots, X_n iid with mean μ and variance σ^2

Theorem. (Weak Law of Large Numbers) Let $X_1, ..., X_n$ iid with mean $\mu < \infty$ and variance $\sigma^2 < \infty$. Then, $\mathbb{P}\left(\left|\frac{X_1 + \dots + X_n}{n} - \mu\right| \ge \epsilon\right) \to 0 \text{ as } n \to \infty$

Next: Learning from data

Parameter Estimation – Workflow

 $\theta = \underline{unknown}$ parameter

Example: $p(x|\theta) = \text{coin flip distribution with unknown } \theta = \text{probability of heads}$

Observation: HTTHHHTHTHTHTHTHTHTHTHTHT

Goal: Estimate

Likelihood

Say we see outcome HHTHH.

 $\mathbb{P}(\mathrm{HHTHH}|\theta) = \theta^4(1-\theta)$

Probability of observing the outcome HHTHH if θ = prob. of heads

 $\mathbb{P}(x|\theta) = \text{probability of (individual) outcome } x \text{ given } \theta \text{ model } \theta \text{ (H/T?)}$

As a function of x (fixed θ): A probability

As a function of θ (fixed x): Likelihood

$$\sum_{x} \mathbb{P}(x|\theta) = 1$$

(Discrete case)

Likelihood of Different Observations

Definition. The **likelihood** of independent observations x_1, \dots, x_n is $L(x_1, \dots, x_n | \theta) = \prod_{i=1}^n \mathbb{P}(x_i | \theta)$

Maximum Likelihood Estimation (MLE). Given data $x_1, ..., x_n$, find $\hat{\theta} = \hat{\theta}(x_1, ..., x_n)$ ("the MLE") of model such that $L(x_1, ..., x_n | \hat{\theta})$ is maximized!

Usually: Solve
$$\frac{\partial L(x_1, \dots, x_n | \theta)}{\partial \theta} = 0$$
 or $\frac{\partial \ln L(x_1, \dots, x_n | \theta)}{\partial \theta} = 0$ [+check it's a max!]

Example – Coin Flips

Coin-flip outcomes x_1, \dots, x_n , with n_H heads, n_T tails

 $-1.e., n_H + n_T = n$ Goal: estimate θ = prob. heads.

$$L(x_1,\ldots,x_n|\theta) = \theta^{n_H}(1-\theta)^{n_T}$$

$$\ln L(x_1, \dots, x_n | \theta) = n_H \ln \theta + n_T \ln(1 - \theta)$$

$$\frac{\partial}{\partial \theta} \ln L(x_1, \dots, x_n | \theta) = n_H \cdot \frac{1}{\theta} - n_T \cdot \frac{1}{1 - \theta}$$

Solve $n_H \cdot \frac{1}{\theta} - n_T \cdot \frac{1}{1 - \theta} = 0$ -----

The Continuous Case

Given *n* samples $x_1, ..., x_n$ from a Gaussian $\mathcal{N}(\mu, \sigma^2)$, estimate $\theta = (\mu, \sigma^2)$

Why density?

- Density ≠ probability, but:
 - For maximizing likelihood, we really only care about relative likelihoods, and density captures that
 - has desired property that likelihood increases with better fit to the model

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. <u>Most likely</u> μ ? [i.e., we are given the <u>promise</u> that the variance is one]

n samples $x_1, \ldots, x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. <u>Most likely μ ?</u>

18

n samples $x_1, \ldots, x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. <u>Most likely μ ?</u>

19

Example – Gaussian Parameters

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$

Goal: estimate μ = expectation

$$L(x_1, \dots, x_n | \mu) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-\frac{(x_i - \mu)^2}{2}} = \left(\frac{1}{\sqrt{2\pi}}\right)^n \prod_{i=1}^n e^{-\frac{(x_i - \mu)^2}{2}}$$

$$\ln L(x_1, \dots, x_n | \mu) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^n \frac{(x_i - \mu)^2}{2}$$

Example – Gaussian Parameters

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$

Note:
$$\frac{\partial}{\partial \mu} \frac{(x_i - \mu)^2}{2} = \frac{1}{2} \cdot 2 \cdot (x_i - \mu) \cdot (-1) = \mu - x_i$$

 $\frac{\partial}{\partial \mu} \ln L(x_1, \dots, x_n | \mu) = \sum_{i=1}^n (x_i - \mu) = \sum_{i=1}^n x_i - n\mu = 0$

$\hat{\mu} =$	$\sum_{i}^{n} x_{i}$
	n

In other words, MLE is the sample mean of the data.

Goal: estimate μ = expectation

Next: *n* samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, \sigma^2)$. <u>Most likely</u> μ and σ^2 ?

