
CSE 312

Foundations of Computing II
Lecture 23: More on CLT + Parameter Estimation I

Stefano Tessaro
tessaro@cs.washington.edu

1



The CLT – Recap
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Theorem. (Central Limit Theorem) The CDF of !" converges to 
the CDF of the standard normal #(0,1), i.e.,

lim
"→-

ℙ !" ≤ 0 =
1
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758
9/;d=

!" =
>? +⋯+ >" − CD

E C

>?,… , >" iid with mean D
and variance E;

One main application: (Normal) approximation of probabilities



Example – Recap

We flip C independent coins, heads with probability G = 0.75. 
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> = # heads 

ℙ(> ≤ 0.7C)

C exact # K, LM

approx
10 0.4744072 0.357500327
20 0.38282735 0.302788308
50 0.25191886 0.207108089
100 0.14954105 0.124106539
200 0.06247223 0.051235217
1000 0.00019359 0.000130365

D = N > = 0.75C E; = Var > = 0.1875C



Example – Bad Approximation

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?
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Exact. ℙ > ∈ 20,21 =
40

20
+

40

21

1

2

UV

≈ 0.2448

Approx. ℙ 20 ≤ > ≤ 21 = Φ
20 − 20

10
≤
> − 20

10
≤
21 − 20

10

≈ Φ 0 ≤
> − 20

10
≤ 0.32

= Φ 0.32 − Φ 0 ≈ 0.1241

!



Example – Even Worse Approximation

Fair coin flipped (independently) 40 times. Probability of 20 heads?
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Exact. ℙ > = 20 =
40

20

1

2

UV

≈ 0.1254

Approx. ℙ 20 ≤ > ≤ 20 = 0 !



Solution – Continuity Correction 

Round to next integer!
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To estimate probability that discrete RV lands in (integer) interval {[, … , \}, compute 

probability continuous approximation lands in interval [[ −
?

;
, \ +

?

;
]



Example – Continuity Correction

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?
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Exact. ℙ > ∈ 20,21 =
40

20
+

40

21

1

2

UV

≈ 0.2448

Approx. ℙ 19.5 ≤ > ≤ 21.5 = Φ
19.5 − 20

10
≤
> − 20

10
≤
21.5 − 20

10

≈ Φ −0.16 ≤
> − 20

10
≤ 0.47

= Φ −0.16 − Φ 0.47 ≈ 0.2452

"



Example – Continuity Correction

Fair coin flipped (independently) 40 times. Probability of 20 heads?
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Exact. ℙ > = 20 =
40

20

1

2

UV

≈ 0.1254

Approx. ℙ 19.5 ≤ > ≤ 21.5 = Φ
19.5 − 20

10
≤
> − 20

10
≤
20.5 − 20

10

≈ Φ −0.16 ≤
> − 20

10
≤ 0.16

= Φ −0.16 − Φ 0.16 ≈ 0.1272



(Weak) Law of Large Numbers
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Theorem. (Weak Law of Large Numbers) Let >?,… , >" iid with mean D < ∞ and 
variance E; < ∞.  Then,

ℙ
def⋯fdg

"
− D ≥ i → 0 as C → ∞

Theorem. (Central Limit Theorem) The CDF of !" converges to 
the CDF of the standard normal #(0,1), i.e.,

lim
"→-

ℙ !" ≤ 0 =
1

23
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758
9/;d=

!" =
>? +⋯+ >" − CD

E C

>?,… , >" iid with mean D
and variance E;

Proof: Use Chebyshev
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Next: Learning from data



Parameter Estimation – Workflow
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Distribution
ℙ(=|k)

Independent 
samples =?, … , ="
from ℙ(=|k)

Algorithm lk

Parameter 
estimate

k = unknown parameter

Example: G(=|k) = coin flip distribution with unknown k = probability of heads  

Observation:  HTTHHHTHTHTTTTHTHTTTTTHT

Goal: Estimate k



Likelihood
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ℙ HHTHH k = kU(1 − k)

Probability of observing the 
outcome HHTHH if k = prob. 
of heads

Say we see outcome HHTHH. 
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ℙ = k = 1

As a function of k (fixed =): Likelihood



Likelihood of Different Observations
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Definition. The likelihood of independent observations =?, … . , =" is

p =?, … . , =" k =q

rs?

"

ℙ(=r|k)

(Discrete case)

Maximum Likelihood Estimation (MLE). Given data =?, … . , =", find 
lk = lk(=?, … , =") (“the MLE”) of model such that p =?, … . , ="

lk is 
maximized!

Usually: Solve 
tu =?, … . , =" k

tv
= 0 or 

t wx u =?, … . , =" k

tv
= 0 [+check it’s a max!]   



Example – Coin Flips

Coin-flip outcomes =?, … , =", with Cy heads, Cz tails

– I.e., Cy + Cz = C
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p =?, … . , =" k = k"{ 1 − k "|

Goal: estimate k = 
prob. heads. 

ln p =?, … . , =" k = Cy ln k + Cz ln(1 − k)

~

~k
ln p =?, … . , =" k = Cy ⋅

1

k
− Cz ⋅

1

1 − k

Solve Cy ⋅
?

v
− Cz ⋅

?

?5v
= 0

lk =
"{

"



The Continuous Case

Given C samples =?, … , =" from a Gaussian #(D, E;), estimate 
k = D, E;
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Definition. The likelihood of independent observations =?, … . , =" is

p =?, … . , =" k =q

rs?

"

Ä(=r|k)

Density function! (Why?)



Why density?

• Density ≠ probability, but:

– For maximizing likelihood, we really only care about relative 
likelihoods, and density captures that

– has desired property that likelihood increases with better fit to the 
model
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0−1−2−3−4 1 2 3 4 5 6

C samples =?, … , =" ∈ ℝ from Gaussian #(D, 1). Most likely D?

[i.e., we are given the promise that the variance is one]
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0−1−2−3−4 1 2 3 4 5 6

C samples =?, … , =" ∈ ℝ from Gaussian #(D, 1). Most likely D?

D = 0?

Unlikely …
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0−1−2−3−4 1 2 3 4 5 6

C samples =?, … , =" ∈ ℝ from Gaussian #(D, 1). Most likely D?

D = 3?
Better, but 
optimal? 



Example – Gaussian Parameters

Normal outcomes =?, … , =", known variance E; = 1

20

p =?, … . , =" D =q

rs?

"

1

23
7
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8É5Ñ
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; =
1

23

"

q

rs?

"

7
5
8É5Ñ

9

;

Goal: estimate D = expectation

ln p =?, … . , =" D = − C
ln 23

2
−o

rs?

"

=r − D
;

2



Example – Gaussian Parameters

Normal outcomes =?, … , =", known variance E; = 1

21

Goal: estimate D = expectation

ln p =?, … . , =" D = − C
ln 23

2
−o

rs?

"

=r − D
;

2

~

~D
ln p =?, … . , =" D =o

rs?

"

(=r − D) =o

rs?

"

=r − CD = 0

Note:
t

tÑ

8É5Ñ
9

;
=

?

;
⋅ 2 ⋅ =r − D ⋅ −1 = D − =r

ÖD =
∑
r
"
=r

C

In other words, MLE is the 
sample mean of the data.
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0−1−2−3−4 1 2 3 4 5 6

Next: C samples =?, … , =" ∈ ℝ from Gaussian #(D, E;). Most likely D and 
E;? 


