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Review – Continuous RVs
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Probability Density Function (PDF).

!:ℝ → ℝ s.t.
• ! % ≥ 0 for all % ∈ ℝ

• ∫*+
,+

! % d% = 1

Cumulative Density Function (CDF).
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Review – Continuous RVs
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Uniform Distribution
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< ∼ Unif(9, :)
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We also say that <
follows the uniform 
distribution / is 
uniformly distributed



Uniform Density – Expectation 
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Uniform Density – Variance 
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Uniform Density – Variance 
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< ∼ Unif(9, :)

M <P =
:P + 9: + 9P
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Exponential Density
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Assume expected # of occurrences of an event per unit of time is Z
• Cars going through intersection
• Number of lightning strikes
• Requests to web server
• Patients admitted to ER

Numbers of occurrences of event: Poisson distribution

ℙ < = [ = \*]
Z^

[!
(Discrete)

How long to wait until next event? Exponential density!

Let’s define it and then derive it!



Exponential Distribution
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Definition. An exponential random variable < with parameter Z ≥ 0 is 
follows the exponential density

!C % = `Z\
*]8 % ≥ 0
0 % < 0

CDF: For 1 ≥ 0, 

0C 1 = 2
b

3

Z\*]8 d% = Z c(−1/Z)\*]8
b

3
= 1 − \*]3

We write < ∼ Exp Z and say < that follows the exponential distribution.



Exponential Distribution
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Derivation – Number of Cars

Discretize: In each interval of length 1/j, probability k = ]

l
of car arriving.

11

<l = time until first arrival

1/j

(infinitely many 
intervals)

ℙ <l > 1 = 1 −
Z
j

3l
(scaled) geometric

lim
l→+

ℙ <l > 1 = lim
l→+

1 −
Z
j

3l

= \*]3 =1 − 0C(1)



Expectation
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Memorylessness

Definition. A random variable is memoryless if for all q, r > 0,

ℙ < > q + r < > q) = ℙ < > r .
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Fact. < ∼ Exp(Z) is memoryless.
Assuming exp distr, if you’ve waited q minutes, 
prob of waiting r more is exactly same as q = 0



Memorylessness of Exponential
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Fact. < ∼ Exp(Z) is memoryless.

ℙ < > q + r < > q) =
ℙ < > q + r ∩ < > q

ℙ(< > q)

=
ℙ < > q + r
ℙ(< > q)

=
\*](t,u)

\*]t
= \*]u = ℙ(< > r)

Proof.

Assuming exp distr, if you’ve waited q minutes, 
prob of waiting r more is exactly same as q = 0



The Normal Distribution
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Definition. A Gaussian (or normal) random variable with 
parameters v ∈ ℝ and w ≥ 0 has density

!C % = x

Pyz
\*

{|} ~

~�~

(We say that < follows the Normal Distribution, and write < ∼ Ä(v, wP)) 

Carl Friedrich 

Gauss

We will see next time why the normal distribution is (in some sense) the most 
important distribution. 



The Normal Distribution
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Two Facts
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Fact. If < ∼ Ä v, wP , then M < = v

Proof is easy because density curve is symmetric, and % ⋅
!C v − % = % ⋅ !C(v + %)

Fact. If < ∼ Ä v, wP , then Var < = wP



Shifting and Scaling

Fact. If < ∼ Ä v, wP , then É = 9< + : ∼ Ä 9v + :, 9PwP
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How do we prove this? (Likely) see next week for a simple proof.

Standard (unit) normal = Ä 0, 1

Definition. Φ Ö = ℙ Ü ≤ Ö = x

Py
∫*+
à
\*8

~/Pd% for Ü ∼ Ä 0, 1

Note: Φ Ö has no closed form – generally given via tables 

If < ∼ Ä v, wP , then 0C Ö = ℙ < ≤ Ö = ℙ C*â

z
≤ à*â

z
= Φ(à*â

z
)



Table of Standard Cumulative Normal Density
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