### CSE 312 Foundations of Computing II

#### **Lecture 2: Permutations and Combinations**



#### **Stefano Tessaro**

tessaro@cs.washington.edu

**Sequential process:** We fix elements in a sequence one by one, and see how many possibilities we have at each step.

*Example: "How many sequences are there in*  $\{1,2,3\}^3$ ?"



#### **Product rule – One more example**

5 books



"How many ways are there to distribute 5 books among Alice, Bob, and Charlie?"

Every book to one person, everyone gets  $\geq 0$  books.









#### **Book assignment – Modeling**

 $2^5 = 32$  options Assignment = (A, B, C)





#### **Book assignments – Modeling**

$$2^5 = 32$$
 options  
Assignment = (A, B, C)

# assignments =  $2^5 \times 2^5 \times 2^5 = 2^{15} = 32768$ Correct?



#### **Problem – Overcounting**

Assignment = 
$$(A, B, C)$$

Problem: We are counting some invalid assignments!!!
→ overcounting!



#### **Book assignments – Correct Approach**









**Book assignments – Correct Approach** 

Assignment =  $(x_1, \dots, x_5)$ 



# assignments = 
$$3^5 = 243$$

# Representation of what we are counting is very important!

"How many sequences in  $\{1,2,3\}^3$  with no repeating elements?"



#### **Factorial**

"How many ways to order elements in S, where |S| = n?" Permutations

Answer = 
$$n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$$

**Definition.** The factorial function is  $n! = n \times (n - 1) \times \dots \times 2 \times 1$  Note: 0! = 1



#### **Distinct Letters**

"How many sequences of 5 distinct alphabet letters from  $\{A, B, ..., Z\}$ ?"

E.g., AZURE, BINGO, TANGO. But not: STEVE, SARAH

#### **Answer:** $26 \times 25 \times 24 \times 23 \times 22 = 7893600$

#### In general

#### Aka: *k*-permutations

### **Fact.** # of *k*-element sequences of distinct symbols from *n*-element set is

$$P(n,k) = n \times (n-1) \times \dots \times (n-k+1) = \frac{n!}{(n-k)!}$$

**Number of Subsets** 

"How many size-5 subsets of {A, B, ..., Z}?"
E.g., {A,Z,U,R,E}, {B,I,N,G,O}, {T,A,N,G,O}. But not:
{S,T,E,V}, {S,A,R,H},...

17

**???** 

26!

51

To generate all sequences of 5 distinct letters from  $\{A, B, \dots, Z\}$ :

- Go through all sets  $S \subseteq \{A, B, \dots, Z\}$  of size |S| = 5e.g.  $S = \{A, G, N, O, T\}$ 
  - Go through all permutations of *S* e.g., *TANGO, AGNOT, NAGOT, GOTAN, GOATN, NGOAT, ...*

## Product rule: $\frac{26!}{21!} = ??? \times 5! \rightarrow ??? = \frac{26!}{21! 5!} = 65780$

#### Number of Subsets – Idea

#### Number of Subsets – Binomial Coefficient



**Binomial coefficient** (verbalized as "*n* choose *k*")

**Notation:**  $\binom{S}{k} = \text{all } k\text{-element subsets of } S = \binom{S}{k} = \binom{|S|}{k}$ [also called **combinations**]

#### **Binomial Coefficient – Properties**



**Pascal's Identity** 

Fact. 
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
  
Fact.  $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$ 

"How many solutions  $(x_1, ..., x_k)$  such that  $x_1, ..., x_k \ge 0$  and  $\sum_{i=1}^k x_i = n$ ?"

#### **Example:** k = 3, n = 5

(0,0,5), (5,0,0), (1,0,4), (2,1,2), (3,1,1), (2,3,0), ...

**Example:** k = 3, n = 5

(0,0,5), (5,0,0), (1,0,4), (2,1,2), (3,1,1), (2,3,0), ...

#### **Clever encoding of solutions**



**Example:** k = 3, n = 5

# sols = # els. from 
$$\{0,1\}^7$$
 w/ exactly two os =  $\binom{7}{2}$  = 21

. 7.

#### **Clever encoding of solutions**



"How many solutions  $(x_1, ..., x_k)$  such that  $x_1, ..., x_k \ge 0$  and  $\sum_{i=1}^k x_i = n$ ?"

# sols = # els. from  $\{0,1\}^{n+k-1}$  w/ k - 1 os =  $\binom{n+k-1}{k-1}$ 

#### **Example II – Counting Paths**



"How many shortest paths from bottom-left to top-right?"