CSE 312
Foundations of Computing Il

Lecture 19: Concentration Wrap-Up + Introduction to
Continuous Random Variables

PAUL G. ALLEN SCHOOL Stefano Tessaro
OF COMPUTER SCIENCE & ENGINEERING .
tessaro(@cs.washington.edu

1



Today - Two things

* Wrap-up concentration / tail inequalities [very quick]

* Introduction to continuous (i.e., non-discrete) random
variables

Also: HW5 is online + Naive Bayes due!
* Extra office hour today with Kushal

Midterm results will come today.



Concentration / tail bounds - A guided tour

https://us.edstem.org/courses/125/discussion/8100



https://us.edstem.org/courses/125/discussion/8100

Tail Bounds - Summary

Goal: We need to compute P(X > t) fort > [E(X)

lweknow.. |.weuse.. |toobtan

u = E(X) Markov P(X > t) <%
u = E(X) and 6% = Var(X) Chebyshev P(X >1t) < zlta_rgz)
62
X =X, + -+ X, ,sum of indep. P(X >t) < e z+", where
RVsin [0,1], u = E(X) Chernoft P
U

Chernoff usually wins when i grows as a function of n



Concentration - Summary

Goal: We need to compute P(|X — | > eu) fore > 0and u = E(X)

Wweknow.. |.weuse..|.toobtan

(e only Out of luck!

o = Var(X) Chebyshev P(|X —u| >eu) < V;rg)

X =X, +--+ X, ,sumof indep. &
RVsin [0,1] Cueinon P((|X — p| > en) < 2e”z+e"

Chernoff usually wins when p grows as a function of n



Sampling Theorem - Recap

* M individuals, a fraction p € |0,1] is in favor of CSE313
e Goal: Produce good estimate P of p

* |ldea:

— Ask n < M randomly selected individuals whether they want CSE313
— Responses are Bernoulli X4, ..., X, with parameter p

—LetP— L Xi—>EP)=p

» Sampling theorem: If n > ln(l/c?)ﬁ then P(|[P—p|<0)=>1-56

— 0 = how good is the estimate
— 0 = probability we fail to provide good estimate



Sampling Theorem - Proof P=%ZXL- Ep)=p PX;=1)=p

IP’(‘P — p‘ > 9) = P(‘nﬁ — np‘ > nH)

_ ny _ Need to rephrase in terms of
= P12 X; — np| > nb) relative error to use Chernoff
— [[D(|Z?Xi — np| > npg) Bound withezgand,u:np!
82/p2
< 2 —
oo (-27077")
vor(-gra) 22ov (a5
= Zexp|— n| < zexp|— n
2p + 6 ~_ 2+6

Remove dependency onp



Sampling Theorem - Proof (cont’d)

We have proved:

_ 6%
P(‘P—p‘ >9) <2exp<— n)

2+0

2

We have 2 exp (— B—n) < & if (and only if)

2+60
2+ 6

n =>1n(1/6) 02




Next - Introduction to Continuous Random Variables

Bottom line: Often we want to model experiments where the
outcome is not discrete.



Example - Lightning Strike

Lightning strikes a pole within a one-minute time frame
* T =time of lightning strike
 Every time within [0,1] is equally likely

— Time measured with infinitesimal precision.

T =0.71237131931129576 ...
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Lightning strikes a pole within a one-minute time frame
* T =time of lightning strike
 Every point in time within [0,1] is equally likely

(e

—_—

O 0.5 1

P(T = 0.5) = 14
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Lightning strikes a pole within a one-minute time frame
* T =time of lightning strike
* Every point in time within [0,1] is equally likely

| ——

0 0.2 0.5

P(0.2<T<05)=05-0.2=0.3
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Lightning strikes a pole within a one-minute time frame
* T =time of lightning strike
 Every point in time within [0,1] is equally likely

Y 0.5

P(T =05)=0
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Bottom line

This gives rise to a different type of random variable
P(T =x) =0forallx € [0,1]

Yet, somehow we want

—~P(Te€[0,1]) =1

—IP(T € [a,b]) =b —a

How do we model the behavior of T
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Probability Density Function

_____________________________________________________________________________________________________________________________________________________________________

Definition. A continuous random variable X is defined by a
probability density function (or simply, “density”) fy: R - R
such that

_« Non-negativity: fy (x) = 0 forall x € R

* Normalization: fjozo fx(x)dx =1
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__________________________________________________________________________________

PDF of Unif RV Density # Probability
onmerm ! fr(0.5)=1 P(T=05)=0

T ~ Unif(0,1) N ———

_________________________________________________________________

+00 1
/’J fT(x)dxzjfT(x)dx=1-1=1
— 00 0

-
o —F A
O 1
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Probability of Event Definition. P(X € S) = fs e () dx

________________________________________________________

Example. T ~ Unif(0,1) L, xefod]
A fT(x) — {O X & [0,1] I
1 —t—
b
| —rremb=| red=b-a
o ——t I
0 a b 1
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__________________________________________________________________________________

£ ? Density # Probability
PDF of Unitorm RV ! fx(x) > 1is possible!

X ~ Unif(0,0.5) B ....-:ii il

>
<
=
&2
—/
|
=
=
=
R
IS
O
ad

+00 1
/ J fx(x) dx = f fx(x)dx=2-05=1
—00 0

Intuition: P(X € [x —¢,x + €]) =
0 e |— fy(x) - € for small e
0.5 1
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Cumulative Distribution Function

_____________________________________________________________________________________________________________________________________________________________________

Definition. The cumulative distribution function (cdf) of X is
defined as

Therefore: P(X € [a,b]) = F(b) — F(a)
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Example. T ~ Unif(0,1)

(1, x € [0,1]
17T fT(x) — {O, X & [0,1]
e
0 'l: >
Ci) 1
1 1 (0 x<0
Fr(x) =<x 0<x<1
\1 1 < X
«
0 >
0 1
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Properties of Random Variables

* Quantities of random variables - E(X), Var(X), ... -
generalize naturally from discrete to continuous RVs

— Usually have the same properties
* Basicidea:} — |
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Expectation of a Continuous RV

~ Definition. The expected value of a continuous RV X is defined as
| + 00

E(X) = fx(x) - x dx

 Definition. The variance of a continuous RV X is defined as
| + 00

Var(X) = | f () - (x = EQO)” dx = E(X2) — E(X)?



Expectation of a Continuous RV +oo

Example. T ~ Unif(0,1) e

|1 x € [0,1]
1i fr(x) = {o, x ¢ [0,1]
>
0
0 1
| ) 0,1]
s fT<x>-x={" St 1 1
” 0, X & [0,1] ]E(T) — 12 ——
1T T | 2 2
—/I | | |
0 ) 1 > Area of triangle
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