CSE 312 Foundations of Computing II

Lecture 19: Concentration Wrap-Up + Introduction to Continuous Random Variables

tessaro@cs.washington.edu

Today – Two things

- Wrap-up concentration / tail inequalities [very quick]
- Introduction to continuous (i.e., non-discrete) random variables

- Also: HW5 is online + Naïve Bayes due!
- Extra office hour today with Kushal

Midterm results will come today.

Concentration / tail bounds – A guided tour

https://us.edstem.org/courses/125/discussion/8100

Tail Bounds – Summary

Goal: We need to compute $\mathbb{P}(X > t)$ for $t > \mathbb{E}(X)$

If we know	we use	to obtain
$\mu = \mathbb{E}(X)$	Markov	$\mathbb{P}(X > t) < \frac{\mu}{t}$
$\mu = \mathbb{E}(X)$ and $\sigma^2 = \operatorname{Var}(X)$	Chebyshev	$\mathbb{P}(X > t) < \frac{\operatorname{Var}(X)}{(t-\mu)^2}$
$X = X_1 + \dots + X_n$, sum of indep. RVs in [0,1], $\mu = \mathbb{E}(X)$	Chernoff	$\mathbb{P}(X > t) < e^{-\frac{\epsilon^2}{2+\epsilon}\mu}$, where $\epsilon = \frac{t-\mu}{\mu}$

Chernoff usually wins when μ grows as a function of n

Concentration – Summary

Goal: We need to compute $\mathbb{P}(|X - \mu| > \epsilon \mu)$ for $\epsilon > 0$ and $\mu = \mathbb{E}(X)$

If we know	we use	to obtain
μ only	Out of luck!	
$\sigma^2 = \operatorname{Var}(X)$	Chebyshev	$\mathbb{P}(X - \mu > \epsilon \mu) < \frac{\operatorname{Var}(X)}{\epsilon^2 \mu^2}$
$X = X_1 + \dots + X_n$, sum of indep. RVs in [0,1]	Chernoff	$\mathbb{P}((X-\mu > \epsilon\mu) < 2e^{-\frac{\epsilon^2}{2+\epsilon}\mu}$

Chernoff usually wins when μ grows as a function of n

Sampling Theorem – Recap

- *M* individuals, a fraction $p \in [0,1]$ is in favor of CSE313
- **Goal:** Produce good estimate \hat{P} of p

• Idea:

- Ask n < M randomly selected individuals whether they want CSE313
- Responses are Bernoulli X_1, \ldots, X_n with parameter p
- $-\operatorname{Let}\widehat{P} = \frac{1}{n}\sum_{i=1}^{n}X_{i} \to \mathbb{E}(\widehat{P}) = p$
- Sampling theorem: If $n \ge \ln(1/\delta) \frac{2+\theta}{\theta^2}$, then $\mathbb{P}(|\hat{P} p| \le \theta) \ge 1 \delta$
 - $-\theta$ = how good is the estimate
 - $-\delta$ = probability we fail to provide good estimate

Sampling Theorem – Proof

$$\widehat{P} = \frac{1}{n} \sum_{i=1}^{n} X_i \quad \mathbb{E}(\widehat{P}) = p \qquad \mathbb{P}(X_i = 1) = p$$

$$\mathbb{P}(|\hat{P} - p| > \theta) = \mathbb{P}(|n\hat{P} - np| > n\theta)$$

$$= \mathbb{P}(|\sum_{i}^{n} X_{i} - np| > n\theta)$$

$$= \mathbb{P}(|\sum_{i}^{n} X_{i} - np| > np\frac{\theta}{p})$$
Need to rephrase in terms of relative error to use Chernoff Bound with $\epsilon = \frac{\theta}{p}$ and $\mu = np!$

$$< 2 \exp\left(-\frac{\theta^{2}/p^{2}}{2 + \theta/p}pn\right)$$

$$= 2 \exp\left(-\frac{\theta^{2}}{2p + \theta}n\right) \le 2 \exp\left(-\frac{\theta^{2}}{2 + \theta}n\right)$$

Remove dependency on *p*

Sampling Theorem – Proof (cont'd)

We have proved:

$$\mathbb{P}(|\hat{P} - p| > \theta) < 2\exp\left(-\frac{\theta^2}{2 + \theta}n\right)$$

We have
$$2 \exp\left(-\frac{\theta^2}{2+\theta}n\right) \le \delta$$
 if (and only if)
 $n \ge \ln(1/\delta) \frac{2+\theta}{\theta^2}$

Next – Introduction to Continuous Random Variables

Bottom line: Often we want to model experiments where the outcome is <u>not</u> discrete.

Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every time within [0,1] is equally likely
 - Time measured with infinitesimal precision.

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely

$\mathbb{P}(T \ge 0.5) = \frac{1}{2}$

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within [0,1] is equally likely

 $\mathbb{P}(0.2 \le T \le 0.5) = 0.5 - 0.2 = 0.3$

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely

$\mathbb{P}(T=0.5)=0$

Bottom line

- This gives rise to a different type of random variable
- $\mathbb{P}(T = x) = 0$ for all $x \in [0,1]$
- Yet, somehow we want
 - $-\mathbb{P}(T\in[0,1])=1$
 - $-\mathbb{P}(T\in [a,b])=b-a$
 - ...
- How do we model the behavior of *T*?

Probability Density Function

Definition. A continuous random variable *X* is defined by a probability density function (or simply, "density") $f_X : \mathbb{R} \to \mathbb{R}$ such that

- Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$
- Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$

PDF of Uniform RV

 $T \sim \text{Unif}(0,1)$

0

Density \neq Probability $f_T(0.5) = 1 \quad \mathbb{P}(T = 0.5) = 0$

Probability of Event

Definition. $\mathbb{P}(X \in S) = \int_{S} f_X(x) dx$

17

 $X \sim \text{Unif}(0,0.5)$

0

Cumulative Distribution Function

Definition. The **cumulative distribution function (cdf)** of *X* is defined as

$$F_X(x) = \mathbb{P}(X \le x) = \int_{-\infty}^x f_X(x) \, \mathrm{d}x$$

Therefore: $\mathbb{P}(X \in [a, b]) = F(b) - F(a)$

Properties of Random Variables

- Quantities of random variables E(X), Var(X), ... generalize naturally from discrete to continuous RVs
 Usually have the same properties
- Basic idea: $\Sigma \rightarrow \int$

Expectation of a Continuous RV

Definition. The **expected value** of a continuous RV X is defined as $\mathbb{E}(X) = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, \mathrm{d}x$ Fact. $\mathbb{E}(aX + bY + c) = a\mathbb{E}(X) + b\mathbb{E}(Y) + c$ **Definition.** The **variance** of a continuous RV X is defined as $\operatorname{Var}(X) = \int_{-\infty}^{+\infty} f_X(x) \cdot \left(x - \mathbb{E}(X)\right)^2 dx = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

Expectation of a Continuous RV

Example. $T \sim \text{Unif}(0,1)$

