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Today – Two things

• Wrap-up concentration / tail inequalities [very quick]
• Introduction to continuous (i.e., non-discrete) random 

variables

Also: HW5 is online + Naïve Bayes due! 
• Extra office hour today with Kushal

Midterm results will come today.
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Concentration / tail bounds – A guided tour

https://us.edstem.org/courses/125/discussion/8100
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https://us.edstem.org/courses/125/discussion/8100


Tail Bounds – Summary 
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Goal: We need to compute ℙ(# > %) for % > '(#)

If we know … … we use … … to obtain

( = '(#) Markov ℙ # > % <
+

,

( = '(#) and -. = Var(#) Chebyshev ℙ # > % <
234(5)

,6+ 7

# = #8 +⋯+ #; , sum of indep. 
RVs in [0,1], ( = '(#)

Chernoff ℙ # > % < A
6
B
7

7CB
+, where 

D =
,6+

+

Chernoff usually wins when ( grows as a function of E



Concentration – Summary 
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Goal: We need to compute ℙ(|# − (| > D() for D > 0 and ( = '(#)

If we know … … we use … … to obtain
( only Out of luck!

-
.
= Var(#) Chebyshev ℙ(|# − (| > D() <

234(5)

H7+7

# = #8 +⋯+ #; , sum of indep. 
RVs in [0,1] Chernoff

ℙ (|# − (| > D( < 2A
6
B
7

7CB
+

Chernoff usually wins when ( grows as a function of E



Sampling Theorem – Recap

• J individuals, a fraction K ∈ [0,1] is in favor of CSE313

• Goal: Produce good estimate MN of K
• Idea: 
– Ask E < J randomly selected individuals whether they want CSE313 
– Responses are Bernoulli #8,… , #; with parameter K

– Let MN =
8

;
∑
QR8

;
#Q→ ' MN = K

• Sampling theorem: If E ≥ ln 1/W
.XY

Y7
, then  ℙ MN − K ≤ [ ≥ 1 − W

– [ = how good is the estimate
– W = probability we fail to provide good estimate
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Sampling Theorem – Proof 
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ℙ #Q = 1 =K

ℙ MN − K > [ = ℙ E MN − EK > E[

= ℙ ∑
Q

;
#Q − EK > E[

< 2 exp −
[
.
/K

.

2 + [/K
KE

= ℙ ∑
Q

;
#Q − EK > EK

Y

_

= 2 exp −
[
.

2K + [
E ≤ 2 exp −

[
.

2 + [
E

Need to rephrase in terms of 
relative error to use Chernoff 

Bound with D =
Y

_
and ( = EK!

Remove dependency on K

MN =
1

E
`

QR8

;

#Q
' MN = K



Sampling Theorem – Proof  (cont’d)
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ℙ MN − K > [ < 2 exp −
[
.

2 + [
E

We have proved:

We have 2 exp −
Y
7

.XY
E ≤ W if (and only if)  

E ≥ ln 1/W
2 + [

[.



Next – Introduction to Continuous Random Variables

Bottom line: Often we want to model experiments where the 
outcome is not discrete.
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Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame
• a = time of lightning strike
• Every time within [0,1] is equally likely
– Time measured with infinitesimal precision.
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0 1a = 0.71237131931129576…
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Lightning strikes a pole within a one-minute time frame
• a = time of lightning strike
• Every point in time within [0,1] is equally likely

ℙ a ≥ 0.5 =

0 10.5

½
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Lightning strikes a pole within a one-minute time frame
• a = time of lightning strike
• Every point in time within [0,1] is equally likely

ℙ 0.2 ≤ a ≤ 0.5 =

0 10.5

0.5 − 0.2 = 0.3

0.2
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Lightning strikes a pole within a one-minute time frame
• a = time of lightning strike
• Every point in time within [0,1] is equally likely

ℙ a = 0.5 =

0 10.5

0



Bottom line

• This gives rise to a different type of random variable
• ℙ a = i = 0 for all i ∈ [0,1]
• Yet, somehow we want
– ℙ a ∈ [0,1] = 1

– ℙ a ∈ [j, k] = k − j

– …

• How do we model the behavior of a?
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Probability Density Function

Definition. A continuous random variable # is defined by a 
probability density function (or simply, “density”) l5:ℝ → ℝ

such that

• Non-negativity: l5 i ≥ 0 for all i ∈ ℝ

• Normalization: ∫
6q

Xq

l5 i di = 1
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PDF of Uniform RV
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10

ls i = t
1, i ∈ [0,1]

0, i ∉ [0,1]

v

6q

Xq

ls i di = v

w

8

ls i di = 1 ⋅ 1 = 1

0

1

a ∼ Unif(0,1)

Density ≠ Probability

ls 0.5 = 1 ℙ a = 0.5 = 0



Probability of Event Definition. ℙ # ∈ ~ = ∫
�
l5 i di
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10

ls i = t
1, i ∈ [0,1]

0, i ∉ [0,1]

ℙ a ∈ [j, k] = v

Ä

Å

ls i di = k − j

0

1

Example. a ∼ Unif(0,1)

j k



PDF of Uniform RV
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l5 i = t
2, i ∈ [0,0.5]

0, i ∉ [0,0.5]

v

6q

Xq

l5 i di = v

w

8

l5 i di = 2 ⋅ 0.5 = 1

0

2

# ∼ Unif(0,0.5)

Density ≠ Probability

1

0.5

l5 i ≫ 1 is possible!

Intuition: ℙ # ∈ i − D, i + D ≈

l5 i ⋅ D for small D



Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of # is 
defined as

Ñ5 i = ℙ # ≤ i = v

6q

Ö

l5 i di
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Therefore: ℙ # ∈ [j, k] = Ñ k − Ñ(j)
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10

ls i = t
1, i ∈ [0,1]

0, i ∉ [0,1]

0

1

Example. a ∼ Unif(0,1)

10
0

1
Ñs i = Ü

0 i ≤ 0

i 0 ≤ i ≤ 1

1 1 ≤ i

pdf

cdf



Properties of Random Variables

• Quantities of random variables – '(#), Var(#), … –
generalize naturally from discrete to continuous RVs
– Usually have the same properties

• Basic idea: ∑→ ∫
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Expectation of a Continuous RV
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Definition. The expected value of a continuous RV # is defined as

'(#) = v

6q

Xq

l5 i ⋅ i di

Fact. ' j# + ká + à = j' # + k' á + à

Definition. The variance of a continuous RV # is defined as

Var # = v

6q

Xq

l5 i ⋅ i − ' #
.

di = ' #
.
− ' #

.



Expectation of a Continuous RV
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Definition.

'(#) = v

6q

Xq

l5 i ⋅ i di

ls i = t
1, i ∈ [0,1]

0, i ∉ [0,1]

Example. a ∼ Unif(0,1)

10
0

1

10
0

1

ls i ⋅ i = t
i, i ∈ [0,1]

0, i ∉ [0,1]
' a =

1

2
1
.
=
1

2

Area of triangle


