CSE 312 Foundations of Computing II

Lecture 18: Chernoff Bounds and Applications

Stefano Tessaro

tessaro@cs.washington.edu

Class survey

- <u>https://forms.gle/wZ2bXyuxdS8EKenc7</u>
- <u>Please</u> elaborate on low scores in the comments portion. (This will help us fix things.)

Chernoff-Hoeffding Bound

Theorem. Let $X = X_1 + \dots + X_n$ be a sum of independent RVs taking values in [0,1] such that $\mathbb{E}(X) = \mu$. Then, for every $\epsilon > 0$,

$$\mathbb{P}(X \ge (1+\epsilon) \cdot \mu) \le e^{-\frac{\epsilon^2 \mu}{2+\epsilon}}, \qquad \mathbb{P}(X \le (1-\epsilon) \cdot \mu) \le e^{-\frac{\epsilon^2 \mu}{2}}$$

In particular,

$$\mathbb{P}(|X - \mu| \ge \epsilon \cdot \mu) \le 2e^{-\frac{\epsilon^2 \mu}{2 + \epsilon}}$$

[Also holds with $(\leq, \geq) \rightarrow (<, >)$]

Herman Chernoff, Herman Rubin, Wassily Hoeffding

Example: If *X* binomial w/ parameters n, p, then $X = X_1 + \cdots + X_n$ is a sum of independent {0,1}-Bernoulli variables.

Chernoff-Hoeffding Bound – Binomial Distribution

Theorem. (CH bound, binomial case) Let *X* be a binomial RV with parameters *p* and *n*. Let $\mu = np = \mathbb{E}(X)$. Then, for any $\epsilon > 0$,

$$\mathbb{P}(|X-\mu| \ge \epsilon \cdot \mu) \le 2e^{-\frac{\epsilon^2 \mu}{2+\epsilon}}.$$

Chernoff-Hoeffding Bound – Binomial Distribution

Theorem. (CH bound, binomial case) Let *X* be a binomial RV with parameters *p* and *n*. Let $\mu = np = \mathbb{E}(X)$. Then, for any $\epsilon > 0$,

$$\mathbb{P}(|X-\mu| \ge \epsilon \cdot \mu) \le 2e^{-\frac{\epsilon^2 \mu}{2+\epsilon}}.$$

Binomial: $n = 800, p = 0.5 \rightarrow \mu = np = 400$

Chebyshev: $\mathbb{P}(|X - \mu| \ge 0.1\mu) \le 0.125$

CH: $\mathbb{P}(|X - \mu| \ge 0.1\mu) \le 2e^{-\frac{4}{2.1}} = 0.296 \dots$

Chernoff-Hoeffding Bound – Binomial Distribution

Theorem. (CH bound, binomial case) Let *X* be a binomial RV with parameters *p* and *n*. Let $\mu = np = \mathbb{E}(X)$. Then, for any $\epsilon > 0$,

$$\mathbb{P}(|X-\mu| \ge \epsilon \cdot \mu) \le 2e^{-\frac{\epsilon^2 \mu}{2+\epsilon}}.$$

Binomial: $n = 8000, p = 0.5 \rightarrow \mu = np = 4000$

Chebyshev: $\mathbb{P}(|X - \mu| \ge 0.1\mu) \le 0.0125$

CH: $\mathbb{P}(|X - \mu| \ge 0.1\mu) \le 2e^{-\frac{40}{2.1}} \approx 1.7 \times 10^{-8}$

Application – Distributed Load Balancing

We have k processors, and $n \gg k$ jobs. We want to distribute jobs evenly across processors.

Strategy: Each job assigned to a randomly chosen processor!

 $X_i = \text{load of processor } i$ $X_i \sim \text{Binomial}(n, 1/k)$ $\mathbb{E}(X_i) = n/k$

 $X = \max{X_1, \dots, X_k} = \max$ load of a processor

Question: How close is *X* to n/k?

Distributed Load Balancing

Claim. (Load of single server) If $n > 9k \ln k$, then $\mathbb{P}\left(X_i > \frac{n}{k} + 3\sqrt{n \ln k / k}\right) \le 1/k^3$.

Example:

- $n = 10^6, k = 1000$
- $\frac{n}{k} + 3\sqrt{n \ln k / k} \approx 1249$
- "The probability that server *i* processes more than 1249 jobs is at most 1-over-one-billion!"

Distributed Load Balancing

Claim. (Load of single server) If $n > 9k \ln k$, then $\mathbb{P}\left(X_i > \frac{n}{k} + 3\sqrt{n \ln k / k}\right) \le 1/k^3$.

Proof. Set
$$\mu = \mathbb{E}(X_i) = \frac{n}{k}$$
 and $\epsilon = 3\sqrt{\frac{\ln k}{\mu}} = 3\sqrt{\frac{k}{n}} \ln k < 1$
 $\mathbb{P}(X_i > \mu + 3\sqrt{\mu \ln k}) = \mathbb{P}\left(X_i > \mu\left(1 + 3\sqrt{\frac{\ln k}{\mu}}\right)\right)$
 $= \mathbb{P}(X_i > \mu(1 + \epsilon))$
 $\leq e^{-\frac{\epsilon^2 \mu}{2 + \epsilon}} < e^{-\frac{\epsilon^2 \mu}{3}} = e^{-3\ln k} = \frac{1}{k^3}$

What about the maximum load?

Claim. (Load of single server) If $n > 9k \ln k$, then $\mathbb{P}\left(X_i > \frac{n}{k} + 3\sqrt{n \ln k / k}\right) \le 1/k^3$.

What about $X = \max\{X_1, \dots, X_k\}$?

Note: X_1, \ldots, X_k are <u>not</u> (mutually) independent!

In particular: $X_1 + \cdots + X_k = n$

Remember: When non-trivial outcome of one RV can be derived from other RVs, they are nonindependent.

Distributed Load Balancing

Claim. (Load of single server) If $n > 9k \ln k$, then $\mathbb{P}\left(X_i > \frac{n}{k} + 3\sqrt{n \ln k / k}\right) \le 1/k^3$.

Claim. (Max load) Let $X = \max\{X_1, \dots, X_k\}$. If $n > 9k \ln k$, then $\mathbb{P}\left(X > \frac{n}{k} + 3\sqrt{n \ln k / k}\right) \le 1/k^2$.

Proof.

$$\mathbb{P}\left(X > \frac{n}{k} + 3\sqrt{n\ln k/k}\right) = \mathbb{P}\left(\left\{X_1 > \frac{n}{k} + 3\sqrt{n\ln k/k}\right\} \cup \dots \cup \left\{X_k > \frac{n}{k} + 3\sqrt{n\ln k/k}\right\}\right)$$
$$\leq \mathbb{P}\left(X_1 > \frac{n}{k} + 3\sqrt{\frac{n\ln k}{k}}\right) + \dots + \mathbb{P}\left(X_k > \frac{n}{k} + 3\sqrt{n\ln k/k}\right) \leq k \cdot \frac{1}{k^3} = 1/k^2$$

Application – Polling

We have a (large) population of M CS students.

- A fraction p ∈ [0,1] supports the introduction of CSE 313
 a harder, follow-up class to CSE 312, with even more math
 CSE 313 is a requirement for all NLP/ML classes
- We want to estimate *p* without asking all *M* students!

How can we do this with enough accuracy? [Say, estimate within absolute error θ]

Polling (cont'd)

Solution: For i = 1, ..., n do:

- Pick random student (out of the *M* students) and ask them whether they want **CSE 313**
- Let $X_i = 1$ if students want **CSE 313**, and $X_i = 0$ else. Output estimate $\hat{P} = \frac{1}{n} \sum_{i=1}^{n} X_i$

 $\mathbb{P}(X_i=1)=p$

Wanted: $\mathbb{P}(|\hat{P} - p| > \theta) < \delta$ For which *n* is this true?! Polling (cont'd) $\mathbb{P}(X_i = 1) = p$

 \mathbb{P}

$$\begin{aligned} |\hat{P} - p| > \theta &) = \mathbb{P}(|n\hat{P} - np| > n\theta) \\ &= \mathbb{P}(|\sum_{i}^{n} X_{i} - np| > n\theta) \\ &= \mathbb{P}\left(|\sum_{i}^{n} X_{i} - np| > np\frac{\theta}{p}\right) \\ &< 2 \exp\left(-\frac{\theta^{2}/p^{2}}{2 + \theta/p}pn\right) \\ &= 2 \exp\left(-\frac{\theta^{2}}{2p + \theta}n\right) \le 2 \exp\left(-\frac{\theta^{2}}{2 + \theta}n\right) \end{aligned}$$

Polling (cont'd)
$$\mathbb{P}(X_i = 1) = p$$

We have proved:

$$\mathbb{P}(|\hat{P} - p| > \theta) < 2\exp\left(-\frac{\theta^2}{2 + \theta}n\right)$$

We have
$$2 \exp\left(-\frac{\theta^2}{2+\theta}n\right) \le \delta$$
 if (and only if)
 $n \ge \ln(1/\delta) \frac{2+\theta}{\theta^2}$

Polling – Summary

Theorem. (Sampling Theorem) Assume we use independent uniformly random samples to produce an estimate \hat{P} of $p \in [0,1]$. If

 $n \ge \ln(1/\delta) \frac{2+\theta}{\theta^2}$,

then

$$\mathbb{P}(|\widehat{P}-p|\leq\theta)\geq 1-\delta.$$

Important: "Sample size" *n* is <u>independent</u> of the population size, *M*. Only depends on desired accuracy.

e.g. $\theta = \delta = 0.1, n \ge 484$

Central question in CS and statistics – can we do better?!

Why is the Chernoff Bound True?

Theorem. Let $X = X_1 + \dots + X_n$ be a sum of independent RVs taking values in [0,1] such that $\mathbb{E}(X) = \mu$. Then, for every $\epsilon > 0$,

 $\mathbb{P}(X \ge (1+\epsilon) \cdot \mu) \le e^{-\frac{\epsilon^2 \mu}{2+\epsilon}}, \qquad \mathbb{P}(X \le (1-\epsilon) \cdot \mu) \le e^{-\frac{\epsilon^2 \mu}{2}}$

Proof strategy: For any t > 0:

- $\mathbb{P}(X \ge (1 + \epsilon) \cdot \mu) = \mathbb{P}(e^{tX} \ge e^{t(1 + \epsilon) \cdot \mu})$
- Then, apply Markov + independence: $\mathbb{P}(X \ge (1 + \epsilon) \cdot \mu) \le \frac{\mathbb{E}(e^{tX})}{e^{t(1 + \epsilon)\mu}} = \frac{\mathbb{E}(e^{tX_1}) \cdots \mathbb{E}(e^{tX_n})}{e^{t(1 + \epsilon)\mu}}$
- Find *t* minimizing the right-hand-side.