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Distributions – Recap
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Name Pars Range PMF Expectation Variance

Bernoulli ! {0,1} ' 1 = !, ' 0 = 1 − ! ! !(1 − !)

Geometric ! 1,2,3, … = ℕ0 ' 1 = 1 − ! 234! 1/! (1 − !)/!6

Binomial 7, ! {0,1, … , 7} ' 8 =
7

8
!9 1 − ! :39 7! 7!(1 − !)
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Example – Number of Cars

? = # cars passing through an intersection in 1 hour
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Wanted: @ ? = A for some given A > 0
1

Discretize problem: 7 intervals, each of length 4
:

. 

Bernoulli ?2 = 1 if car in 1-th interval (0 otherwise). ℙ(?2 = 1) =
D

:

? = ∑2F4
: ?2

1/7

? is binomial ℙ ? = 1 = :
2

D

:

2
1 −

D

:

:32



Motivation – Number of Cars
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We want now 7 → ∞

ℙ ? = 1 =
7

1

A

7

2

1 −
A

7

:32

=
7!

7 − 1 !

A2

1!
1 −

A

7

:

1 −
A

7

32

? is binomial ℙ ? = 1 = :
2

D

:

2
1 −

D

:

:32

1/7

→ 1 → 1→ J3D



Poisson Random Variables
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Siméon Denis Poisson
1781-1840

Definition. A Poisson random variable ? with parameter A ≥ 0 is such 
that for all 1 = 0,1,2,3…,

ℙ ? = 1 = J3D ⋅
DM

2!

Several examples of “Poisson processes”:
• # of requests to web servers in an hour
• # of photons hitting a light detector in a given interval
• # of patients arriving to ER within an hour
• …

General principle: Infinitely small interval, counting # of occurrences of event, each 
individual event can happen (at most once) with same chance in every interval.



Validity of Distribution

We first want to verify that Possion probabilities sum up to 1.
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N
2FO

P

ℙ ? = 1 = J3DN
2FO

P
A2

1!
= J3DJD = 1

Fact. ∑2FO
P QM

2!
= JQ



Probability Mass Function 
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Probability Mass Function – Convergence of Binomials
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A = 5
! =

R

:
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Expectation
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Theorem. If ? is a Poisson RV with parameter A, then
@(?) = A

@ ? =N
2FO

P

J3D ⋅
A2

1!
⋅ 1 =N

2F4

P

J3D ⋅
A2

(1 − 1)!

= AN
2F4

P

J3D ⋅
A234

(1 − 1)!

= AN
2FO

P

J3D ⋅
A2

1!

Proof.

= 1 (see prior slides!)

We know this by design (limit of Binomial with expectation A), 
but formally, this needs a proof.

= A ⋅ 1 = A



Variance
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Intuitively (limit of Binomial): Var ? = 7! 1 − ! =
:D

:
1 −

D

:
= A 1 −

D

:
→ A

Theorem. If ? is a Poisson RV with parameter A, then Var(?) = A

@ ?6 =N
2FO

P

J3D ⋅
A2

1!
⋅ 16 =N

2F4

P

J3D ⋅
A2

(1 − 1)!
1

= AN
2F4

P

J3D ⋅
A234

(1 − 1)!
⋅ 1 = AN

2FO

P

J3D ⋅
A2

1!
⋅ (1 + 1)

Proof.

= A N
2FO

P

J3D ⋅
A2

1!
⋅ 1 +N

2FO

P

J3D ⋅
A2

1!
= A6 + A

= @ ? = A = 1



Variance – Proof (cont’d)
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@ ?6 = A6 + A

Theorem. If ? is a Poisson RV with parameter A, then Var(?) = A

We now know: 

@ ? = A

Var ? = @ ?6 − @ ? 6 = A6 + A − A6 = A



Discrete Distributions – Final Recap
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Name Pars Range PMF Exp. Var.

Bernoulli ! {0,1} ' 1 = !, ' 0 = 1 − ! ! !(1 − !)

Geometric ! 1,2,3, … = ℕ0 ' 1 = 1 − ! 234! 1/! (1 − !)/!6

Binomial 7, ! {0,1, … , 7} ' 8 =
7

8
!9 1 − ! :39 7! 7!(1 − !)

Poisson A 0,1,2,3, … = ℕ '(1) = J3D ⋅
A2

1!
A A

0 1

Other common distributions: Hypergeometric (see Quiz Section), 
negative binomials (= sum of geometric)



Next – Concentration and its applications
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General question: How close is a random variable to its expectation?

So far: Markov’s inequality + Chebyshev’s inequality
[Also cf. HW5 + Section 6]



Example

Flip 7 independent coins, each heads with probability !
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? = # of flips which are heads

We know that ? is binomial: ℙ ? = 8 = :
9 !

9 1 − ! :39

@ ? = 7 ⋅ !

Question: What is the probability that ? is within 10% of the 
expectation?  

Var ? = 7 ⋅ ! ⋅ (1 − !)



Deviation via Chebyshev
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Is this a good estimate?

Theorem. Let ? be a random variable. Then, for any Z > 0,

ℙ |? − @ ? | ≥ Z ≤
]^_ `

ab
. 

Use Chebyshev’s inequality

ℙ ? − @ ? ≥ c ⋅ @ ? ≤
7! 1 − !

c676!6
=
1 − !

c67!

E.g. c = 0.1, ! = 0.5

ℙ ? − @ ? ≥ 0.1 ⋅ @ ? ≤
100

7
→ 0
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6

Real: ℙ ? − 100 ≥ 10 = 0.179…

Binomial with parameter 7 = 200, ! = 0.5
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Chebyshev: ℙ ? − 400 ≥ 40 ≤ 0.125

Real: ℙ ? − 400 ≥ 40 = 0.005…

Binomial with parameter 7 = 800, ! = 0.5



Can we do better?

• Chebyshev’s inequality indicates that the probability that we are off 
by at least c ⋅ @(?) goes to 0 as 43f

gb:f
= h 1/7 for fixed ! and c

• Exact analysis indicates that probability goes to 0much faster, at 
least for a binomial random variable.
– How fast? 
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Chernoff-Hoeffding Bound – Binomial Distribution
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Theorem. (Chernoff-Hoeffding) Let ? be a binomial RV with 
parameters ! and 7. Let i = 7! = @ ? . Then, for any j > 0,

ℙ ? − i ≥ c ⋅ i ≤ 2J3
kbl
bmk. 

Binomial: 7 = 800, ! = 0.5 → i = 7! = 400

Chebyshev: ℙ ? − i ≥ 0.1i ≤ 0.125

CH: ℙ ? − i ≥ 0.1i ≤ 2J3
n
b.o = 0.296…



Chernoff-Hoeffding Bound – Binomial Distribution
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Theorem. (Chernoff-Hoeffding) Let ? be a binomial RV with 
parameters ! and 7. Let i = 7! = @ ? . Then, for any j > 0,

ℙ ? − i ≥ c ⋅ i ≤ J3
kbl
bmk. 

Binomial: 7 = 8000, ! = 0.5 → i = 7! = 4000

Chebyshev: ℙ ? − i ≥ 0.1i ≤ 0.0125

CH: ℙ ? − i ≥ 0.1i ≤ 2J3
nq
b.o ≈ 1.7×103t


