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Announcements

* Office hours: | am available 1-3pm.

 Please make sure to read the instructions for the midterm.
* Practice midterm solutions posted in the afternoon.



Today

How much can we compress data?
How much information is really contained in data?

Central topic in information theory, a discipline based on
probability which has been extremely useful across electrical
engineering, computer science, statistics, physics, ...

Claude Shannon, “A Mathematical Theory of Communication”, 1948

http://www.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf



http://www.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf

Encoding Scheme

x—[ enc } -Z = enc(x) [ dec j—x

enc: X — {0,1}" dec: X - {0,1}

Decodability. For all values x € X: dec(enc(x)) = x

Goal: Encoding should “compress”

[We will formalize this using the language of probability theory]



Encoding — Example

Say we need to encode a word from the set X' =
{hello, world, cse312}

>0

hello >0 hello > 0 hello
world > 1 world > 10 world
cse312 > 11 cse312 > 11 cse312

> 11

enc enc enc

> 100000000



Better Visualization — Trees

hello >0
world - 1
cse312 - 11
1
world
hello

cse312

hello >0
world > 10
cse312 > 11
0 1
hello 0

world cse312



Focus - Prefix-free codes

A code is prefix-free if no encoding is a prefix of another one.

i.e. every encoding is a leaf

world
hello

cse312 world cse312

Not prefix-free! Prefix-free!!
1is a prefix of 11



Random Variables - Arbitrary Values

We will consider random variables X: () — X taking values from a
(finite) set X'. [We refer to these as a “random variable over the
alphabet X.”]

Example: X = {hello, world, cse312}

paChell) =1 pyCworid) =1 pylese32) =



The Data Compression Problem

Data = random variable X over alphabet X

X‘[ enc } -/ = enc(X) [ dec j—>X

enc: X — {0,1}" dec: X - {0,1}

Two goals:

1. Decodability. For all values x € X: dec(enc(x)) =X

2. Minimal length. The length |Z| of Z should be as small as possible

More formally: minimize E(|Z])



Expected Length — Example X ={a,b,cj

1 1 1 1
px(@) =5  px(b) =7 px(c) =7 Pz(0) =3
1
pz(10) = 2
1) = -
pz(11) = 7

1 1
IE(|Z|)=E-1+Z-2+—-2=

N | W
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Expected Length — Example X ={a,b,cj

1 1 1 1
px(@) =5  px(b) =7 px(c) =7 Pz(0) =7
1
pz(10) = )
1) = -
pz(11) = 7
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What is the shortest encoding?

Problem. Given a random variable X, find optimal (enc, dec), i.e.,
- E(|enc(X)|) is a small as possible.

Next: There is an inherent limit on how short the encoding can be (in
expectation).
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Random Variables - Arbitrary Values

Assume you are given a random variable X with the following PMF:

) 15
I 16 32 64 64

x| a | b | c | d_
1 1 1
You learn X = a; surprised? s(a) =log, 16/15 ~ 0.09
You learn X = d; surprised? s(d) =6

_______________________________________________________________________________________________________________________________________________________
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Entropy = Expected Surprise

Definition. The entropy of a discrete RV X over alphabet X is

H(X) = E(s(X)) = Z Px(x) - log; (pxl(x))
xeX

Weird convention: 0 log, 1/0 =0

Intuitively: Captures how surprising outcome of random variable is.
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Entropy = Expected Surprise

Definition The entropy of a discrete RV X over alphabet X is

H(X) = E(s(X)) = z Px(x) - log; (pxl(x))

XEX
x| a | b | ¢ | a
15 1 1
Px(x) E 3_2 6_4 6_4
1141()()—15 oo, 24t s Lt gil g
16 052757 732 64 64
B e o s
16 8275732~
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Entropy = Expected Surprise

Definition. The entropy of a discrete RV X over alphabet X is

1
OO = E(50D) = ) py() -log, (——)
Px (x)
XEX
B T AT BE I U T
py(x) 1 0 0 0 px(x) 1/4 1/4  1/4
1 1
H(X) =1-0+3-0log,5 =0 H(X) = 4 71og,(4) =2
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Entropy = Expected Surprise

Definition The entropy of a discrete RV X over alphabet X is

H(X) = E(s(X)) = Z Px(x) - log; (pxl(x))
xeX

Uniform distribution

Takes one value with prob 1
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Shannon’s Source Coding Theorem

_____________________________________________________________________________________________________________________________________________________________________

 Theorem. (Source Coding Theorem) Let (enc, dec) be an optimal
~ prefix-free encoding scheme for a RV X, then

H(X) < E(lenc(X)|]) < H(X) + 1

_____________________________________________________________________________________________________________________________________________________________________

* We cannot compress beyond the entropy
* (Corollary: ”uniform” data cannot be compressed

* We can get within one bit of it.

* Example of optimal code: Huffman Code (CSE 143?)

* Result can be extended to uniquely decodable codes. (E.g., suffix
free)
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_15+10_70<H(X)+1
16 64 64
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Data Compression in the Real World

Main issue: we do not know the distribution of X

* Universal compression: Lempel/Ziv/Welch
— See http://web.mit.edu/6.02/www/f2011/handouts/3.pdf
— Used in GIF, UNIX compress.

— General idea: Assume data is sequence of symbols generated from
a random process to be “estimated”.

* Whole area of computer science dedicated to the topic.

* This is lossless compression, very different from “lossy
compression” used in images, videos, audio etc.

— Assumes humans can be “fooled” with some loss of data
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http://web.mit.edu/6.02/www/f2011/handouts/3.pdf

