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Announcements

• Office hours: I am available 1-3pm.

• Please make sure to read the instructions for the midterm.

• Practice midterm solutions posted in the afternoon.
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Today

How much can we compress data?

3

Central topic in information theory, a discipline based on 
probability which has been extremely useful across electrical 
engineering, computer science, statistics, physics, …

http://www.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
Claude Shannon, “A Mathematical Theory of Communication”, 1948

How much information is really contained in data?

http://www.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf


Encoding Scheme
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!"# $!#% & = !"#(%) %

Decodability. For all values % ∈ +: $!# !"# % = %

!"#:+ → 0,1 ∗ $!#:+ → 0,1 ∗

Goal: Encoding should “compress”

[We will formalize this using the language of probability theory]



Encoding – Example

Say we need to encode a word from the set + =
{hello, world, cse312}
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hello 0

world 1

cse312 11

!"#

hello 0

world 10

cse312 11

!"#

hello 0

world 11

cse312 100000000

!"#



Better Visualization – Trees
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hello

cse312

0 1

1

world

hello 0

world 1

cse312 11

hello

cse312

0 1

1

world

0

hello 0

world 10

cse312 11



Focus – Prefix-free codes
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A code is prefix-free if no encoding is a prefix of another one.

hello

cse312

0 1

1

world
hello

cse312

0 1

1

world

0

Not prefix-free! 
1 is a prefix of 11

Prefix-free!!

i.e. every encoding is a leaf



Random Variables – Arbitrary Values
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We will consider random variables ?:Ω → + taking values from a 
(finite) set +.  [We refer to these as a “random variable over the 
alphabet +.”] 

Example: + = {hello, world, cse312}

AB hello = C
D

AB world = C
E

AB cse312 = C
E



The Data Compression Problem
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!"# $!#? F = !"#(?) ?

Data = random variable ? over alphabet +

Two goals:

1. Decodability. For all values % ∈ +: $!# !"# % = %

2. Minimal length. The length |F| of F should be as small as possible

More formally: minimize H(|F|)

!"#:+ → 0,1 ∗ $!#:+ → 0,1 ∗



Expected Length – Example
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AB I =
1
2

AB J =
1
4

AB L =
1
4

I

J L

0 1

0 1

AM 0 =
1
2

AM 10 =
1
4

AM 11 =
1
4

H F =
1
2
⋅ 1 +

1
4
⋅ 2 +

1
4
⋅ 2 =

3
2

+ = {I, J, L}



Expected Length – Example
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AB I =
1
2

AB J =
1
4

AB L =
1
4

J

I L

0 1

0 1

AM 0 =
1
4

AM 10 =
1
2

AM 11 =
1
4

H F =
1
4
⋅ 1 +

1
2
⋅ 2 +

1
4
⋅ 2 =

7
4

+ = {I, J, L}



What is the shortest encoding?

Problem. Given a random variable ?, find optimal (!"#, $!#), i.e., 
H |!"# ? | is a small as possible.   
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Next: There is an inherent limit on how short the encoding can be (in 
expectation).



Random Variables – Arbitrary Values
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Assume you are given a random variable ? with the following PMF:  

You learn ? = I; surprised?    

% Q R S T

AB(%)
15
16

1
32

1
64

1
64

You learn ? = W; surprised?    

Definition. The surprise of outcome % is X % = logD
C

AZ [

X I = logD 16/15 ≈ 0.09

X W = 6



Entropy = Expected Surprise
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Definition. The entropy of a discrete RV ? over alphabet + is

ℍ ? = H X ? = a
[∈+

AB % ⋅ logD
1

AB %

Intuitively: Captures how surprising outcome of random variable is.

Weird convention: 0 logD 1/0 = 0



Entropy = Expected Surprise
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Definition The entropy of a discrete RV ? over alphabet + is

ℍ ? = H X ? = a
[∈+

AB % ⋅ logD
1

AB %

% Q R S T

AB(%)
15
16

1
32

1
64

1
64

ℍ ? =
15
16

⋅ logD
16
15

+
1
32

⋅ 5 +
1
64

⋅ 6 +
1
64

⋅ 6

=
15
16
logD

16
15

+
11
32

≈ 0.431…



Entropy = Expected Surprise
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Definition. The entropy of a discrete RV ? over alphabet + is

ℍ ? = H X ? = a
[∈+

AB % ⋅ logD
1

AB %

% Q R S T

AB(%) 1 0 0 0

ℍ ? = 1 ⋅ 0 + 3 ⋅ 0 logD
1
0
= 0

% Q R S T

AB(%) 1/4 1/4 1/4 1/4

ℍ ? = 4 ⋅
1
4
logD 4 = 2



Entropy = Expected Surprise
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Definition The entropy of a discrete RV ? over alphabet + is

ℍ ? = H X ? = a
[∈+

AB % ⋅ logD
1

AB %

Proposition. 0 ≤ ℍ ? ≤ logD |+|

Takes one value with prob 1

Uniform distribution



Shannon’s Source Coding Theorem
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Theorem. (Source Coding Theorem) Let (!"#, $!#) be an optimal 
prefix-free encoding scheme for a RV ?, then

ℍ ? ≤ H |!"# ? | ≤ ℍ ? + 1

• We cannot compress beyond the entropy
• Corollary: ”uniform” data cannot be compressed

• We can get within one bit of it.
• Example of optimal code: Huffman Code (CSE 143?)
• Result can be extended to uniquely decodable codes. (E.g., suffix 

free)



Example
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% Q R S T

AB(%)
15
16

1
32

1
64

1
64

I

L W

0 1

0 1

0 1

J

H |!"# ? | =
15
16

⋅ 1 +
1
32

⋅ 2 + 2 ⋅
1
64

⋅ 3

=
15
16

+
10
64

=
70
64

≤ ℍ ? + 1



Data Compression in the Real World

Main issue: we do not know the distribution of ?
• Universal compression: Lempel/Ziv/Welch
– See http://web.mit.edu/6.02/www/f2011/handouts/3.pdf

– Used in GIF, UNIX compress.

– General idea: Assume data is sequence of symbols generated from 
a random process to be “estimated”.

• Whole area of computer science dedicated to the topic.

• This is lossless compression, very different from “lossy 
compression” used in images, videos, audio etc. 
– Assumes humans can be “fooled” with some loss of data
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http://web.mit.edu/6.02/www/f2011/handouts/3.pdf

