CSE 312 Foundations of Computing II

Lecture 16: Information Theory and Data Compression

tessaro@cs.washington.edu

Announcements

- Office hours: I am available 1-3pm.
- Please make sure to read the instructions for the midterm.
- Practice midterm solutions posted in the afternoon.

Today

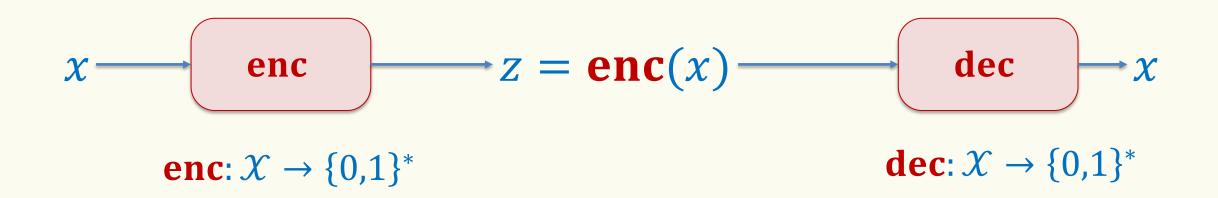
How much can we compress data? How much information is really contained in data?

Central topic in **information theory**, a discipline based on probability which has been extremely useful across electrical engineering, computer science, statistics, physics, ...

Claude Shannon, "A Mathematical Theory of Communication", 1948

http://www.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf

Encoding Scheme

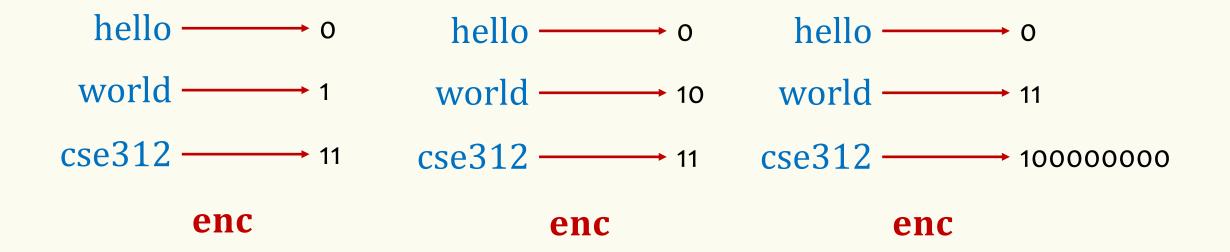


Decodability. For all values $x \in \mathcal{X}$: dec(enc(x)) = x

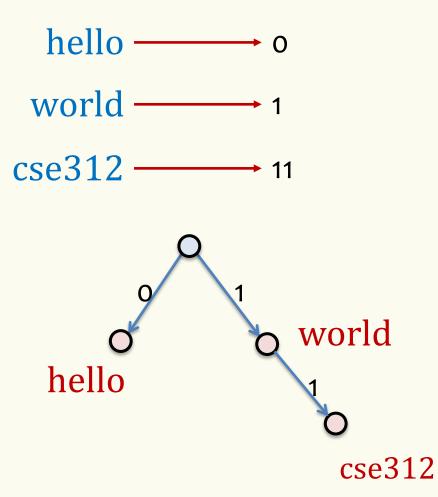
Goal: Encoding should "<u>compress"</u> [We will formalize this using the language of probability theory]

Encoding – Example

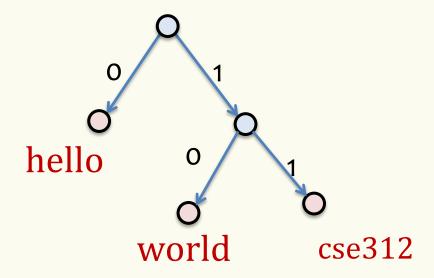
Say we need to encode a word from the set $X = \{\text{hello, world, cse312}\}$



Better Visualization – Trees



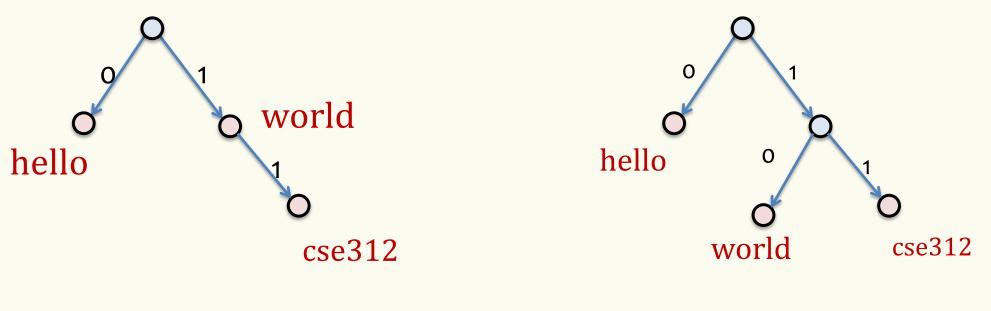
world
$$\longrightarrow$$
 10



Focus – Prefix-free codes

A code is **prefix-free** if no encoding is a **prefix** of another one.

i.e. every encoding is a leaf



Not prefix-free! 1 is a prefix of 11 **Prefix-free!!**

Random Variables – Arbitrary Values

We will consider random variables $X: \Omega \to X$ taking values from a (finite) set X. [We refer to these as a "random variable over the alphabet X."]

Example: $X = \{\text{hello, world, cse312}\}$

$$\mathbb{P}_X(\text{hello}) = \frac{1}{2}$$
 $\mathbb{P}_X(\text{world}) = \frac{1}{4}$ $\mathbb{P}_X(\text{cse312}) = \frac{1}{4}$

The Data Compression Problem

Data = random variable X over alphabet X

$$X \longrightarrow enc \longrightarrow Z = enc(X) \longrightarrow dec \longrightarrow X$$

enc: $X \rightarrow \{0,1\}^*$
$$dec: X \rightarrow \{0,1\}^*$$

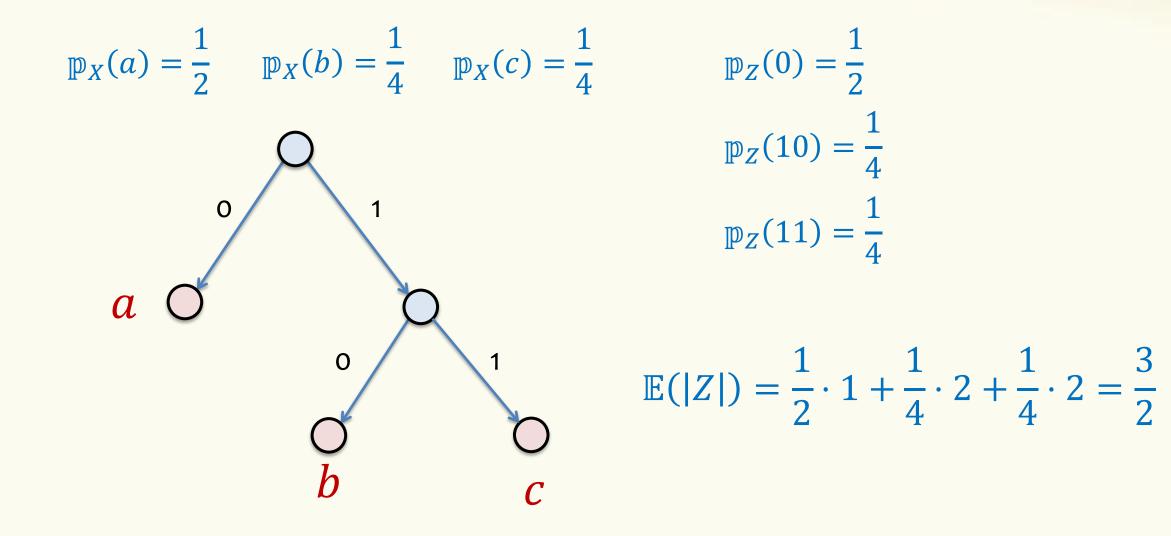
Two goals:

- **1.** Decodability. For all values $x \in \mathcal{X}$: dec(enc(x)) = x
- 2. Minimal length. The length |Z| of Z should be as small as possible

More formally: minimize $\mathbb{E}(|Z|)$

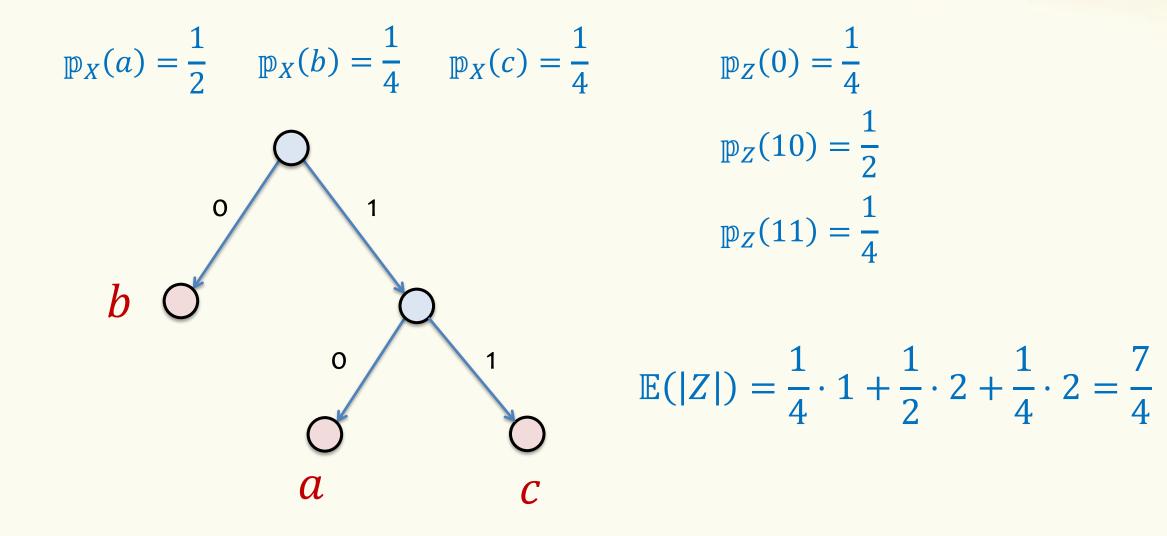
Expected Length – Example

 $\mathcal{X} = \{a, b, c\}$



Expected Length – Example

 $\mathcal{X} = \{a, b, c\}$



Problem. Given a random variable X, find <u>optimal</u> (enc, dec), i.e., $\mathbb{E}(|enc(X)|)$ is a small as possible.

Next: There is an inherent limit on how short the encoding can be (in expectation).

Random Variables – Arbitrary Values

Assume you are given a random variable *X* with the following PMF:

x	a	b	С	d
$\mathbb{p}_X(x)$	$\frac{15}{16}$	$\frac{1}{32}$	$\frac{1}{64}$	$\frac{1}{64}$

You learn X = a; surprised? $s(a) = \log_2 16/15 \approx 0.09$ You learn X = d; surprised?s(d) = 6

Definition. The surprise of outcome x is $s(x) = \log_2\left(\frac{1}{m_x(x)}\right)$

Definition. The **entropy** of a discrete RV *X* over alphabet *X* is $\mathbb{H}(X) = \mathbb{E}(s(X)) = \sum_{x \in \mathcal{X}} \mathbb{P}_X(x) \cdot \log_2\left(\frac{1}{\mathbb{P}_X(x)}\right)$

Weird convention: $0 \log_2 1/0 = 0$

Intuitively: Captures how surprising outcome of random variable is.

Definition The entropy of a discrete RV X over alphabet X is

$$\mathbb{H}(X) = \mathbb{E}(s(X)) = \sum_{x \in \mathcal{X}} \mathbb{P}_X(x) \cdot \log_2\left(\frac{1}{\mathbb{P}_X(x)}\right)$$

x	a	b	С	d
m(x)	15	1	1	1
$\mathbb{P}_X(x)$	16	32	64	64

$$\mathbb{H}(X) = \frac{15}{16} \cdot \log_2 \frac{16}{15} + \frac{1}{32} \cdot 5 + \frac{1}{64} \cdot 6 + \frac{1}{64} \cdot 6$$
$$= \frac{15}{16} \log_2 \frac{16}{15} + \frac{11}{32} \approx 0.431 \dots$$

Definition. The **entropy** of a discrete RV *X* over alphabet *X* is $\mathbb{H}(X) = \mathbb{E}(s(X)) = \sum_{x \in \mathcal{X}} \mathbb{P}_X(x) \cdot \log_2\left(\frac{1}{\mathbb{P}_X(x)}\right)$

x	a	b	С	d
$\mathbb{P}_X(x)$	1	0	0	0

X	a	b	С	d
$\mathbb{P}_X(x)$	1/4	1/4	1/4	1/4

$$\mathbb{H}(X) = 1 \cdot 0 + 3 \cdot 0 \log_2 \frac{1}{0} = 0$$

$$\mathbb{H}(X) = 4 \cdot \frac{1}{4} \log_2(4) = 2$$

Definition The **entropy** of a discrete RV *X* over alphabet *X* is $\mathbb{H}(X) = \mathbb{E}(s(X)) = \sum_{x \in \mathcal{X}} \mathbb{P}_X(x) \cdot \log_2\left(\frac{1}{\mathbb{P}_X(x)}\right)$

Proposition. $0 \leq \mathbb{H}(X) \leq \log_2 |\mathcal{X}|$ Uniform distribution

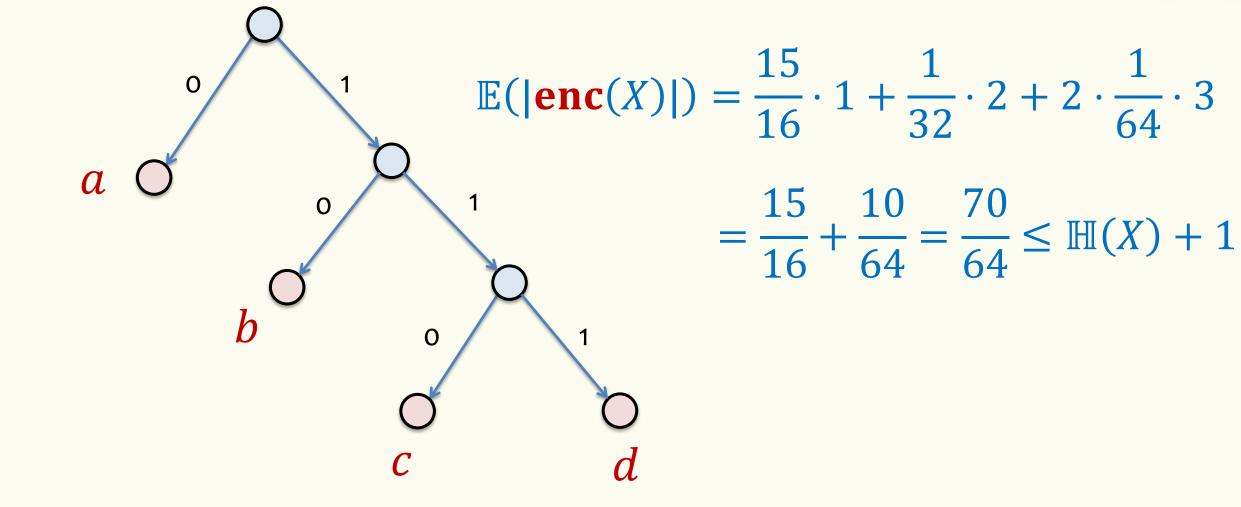
Takes one value with prob 1

Shannon's Source Coding Theorem

Theorem. (Source Coding Theorem) Let (**enc**, **dec**) be an optimal prefix-free encoding scheme for a RV *X*, then $\mathbb{H}(X) \leq \mathbb{E}(|\mathbf{enc}(X)|) \leq \mathbb{H}(X) + 1$

- We cannot compress <u>beyond</u> the entropy
 - Corollary: "uniform" data cannot be compressed
- We can get within one bit of it.
- Example of optimal code: <u>Huffman Code</u> (CSE 143?)
- Result can be extended to uniquely decodable codes. (E.g., suffix free)

Example	x	a	b	С	d
	$\mathbb{P}_X(x)$	$\frac{15}{16}$	$\frac{1}{32}$	$\frac{1}{64}$	$\frac{1}{64}$



Data Compression in the Real World

Main issue: we do not know the distribution of *X*

- <u>Universal</u> compression: Lempel/Ziv/Welch
 - See <u>http://web.mit.edu/6.02/www/f2011/handouts/3.pdf</u>
 - Used in GIF, UNIX compress.
 - General idea: Assume data is sequence of symbols generated from a random process to be "estimated".
- Whole area of computer science dedicated to the topic.
- This is lossless compression, very different from "lossy compression" used in images, videos, audio etc.

– Assumes humans can be "fooled" with some loss of data