CSE 312 Foundations of Computing II

Lecture 14: Markov, Chebyshev / Conditional Expectation

tessaro@cs.washington.edu

Announcements

- Practice Midterms are online.
 - New references online.
- Q&A session on Monday, Oct 28, in class.
- My office hours
 - Moved to Today 3-4pm + Wednesday, 1-3pm
- Next week on Wednesday: Data compression
 - How much can we compress data? (And how does this relate to probability theory?)

Expectation and Variance

So far: Given a random variable X, find $\mathbb{E}(X)$ and Var(X).

Today: Given $\mathbb{E}(X)$ and Var(X), can we "bound" X?

Markov's Inequality

Andrei Andreyevich Markov

1856-1922

Theorem. Let *X* be a random variable taking only non-negative values. Then, for any t > 0,

$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}(X)}{t}.$

Incredibly simplistic – only takes into account the <u>expectation</u>.

However: Extremely powerful when combined with clever tricks.

Markov's Inequality – Proof

 $x \ge t$

Theorem. Let *X* be a (discrete) random variable taking only non-negative values. Then, for any t > 0,

 $\mathbb{P}(X \ge t) \le \frac{\mathbb{E}(X)}{t}.$

$$E(X) = \sum_{x} x \cdot \mathbb{P}(X = x)$$

= $\sum_{x \ge t} x \cdot \mathbb{P}(X = x) + \sum_{x < t} x \cdot \mathbb{P}(X = x)$
 $\ge \sum_{x \ge t} x \cdot \mathbb{P}(X = x)$
 $\ge \sum_{x \ge t} t \cdot \mathbb{P}(X = x) = t \cdot \mathbb{P}(X \ge t)$

 ≥ 0 because $x \geq 0$ whenever $\mathbb{P}(X = x) \geq 0$ (takes only nonnegative values)

. . .

Follows by re-arranging terms

Example – Geometric Random Variable

Let *X* be geometric RV with parameter *p*

$$\mathbb{P}(X=i) = (1-p)^{i-1}p \qquad \qquad \mathbb{E}(X) = \frac{1}{p}$$

"How many times does Alice need to flip a biased coin until she sees heads, if heads occurs with probability p?

What is the probability that $X \ge 2\mathbb{E}(X) = 2/p$?

Markov's inequality:
$$\mathbb{P}(X \ge 2/p) \le \frac{\mathbb{E}(X)}{2/p} = \frac{1}{p} \cdot \frac{p}{2} = \frac{1}{2}$$

Can we do better?

Chebyshev's Inequality

Pafnuty Chebyshev

1821-1894

Theorem. Let *X* be a random variable. Then, for any
$$t > 0$$
,
 $\mathbb{P}(|X - \mathbb{E}(X)| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}$.

Proof: Define $Z = X - \mathbb{E}(X)$

Definition of Variance

$$\mathbb{P}(|Z| \ge t) = \mathbb{P}(Z^2 \ge t^2) \le \frac{\mathbb{E}(Z^2)}{t^2} \doteq \frac{\operatorname{Var}(X)}{t^2}$$
$$|Z| \ge t \text{ iff } Z^2 \ge t^2 \qquad \text{Markov's inequality } (Z^2 \ge 0)$$

Example – Geometric Random Variable

Let *X* be geometric RV with parameter *p*

$$\mathbb{P}(X = i) = (1 - p)^{i - 1} p$$
 $\mathbb{E}(X) = \frac{1}{p}$ $Var(X) = \frac{1 - p}{p^2}$

What is the probability that $X \ge 2\mathbb{E}(X) = 2/p$?

Markov:
$$\mathbb{P}(X \ge 2/p) \le \frac{\mathbb{E}(X)}{2/p} = \frac{1}{p} \cdot \frac{p}{2} = \frac{1}{2}$$

Chebyshev: $\mathbb{P}(X \ge 2/p) \le \mathbb{P}\left(\left|X - \frac{1}{p}\right| \ge \frac{1}{p}\right) \le \frac{\operatorname{Var}(X)}{1/p^2} = 1 - p$

Not better, unless $p > 1/2 \otimes$

Chebyshev's Inequality – Repeated Experiments

"How many times does Alice need to flip a biased coin <u>until she sees heads n</u> times, if heads occurs with probability p?

X = # of flips until *n* times "heads" $X_i = #$ of flips between (i - 1)-st and *i*-th "heads"

Note: X_1, \ldots, X_n are independent and geometric with parameter p

$$\mathbb{E}(X) = \mathbb{E}\left(\sum_{i} X_{i}\right) = \sum_{i} \mathbb{E}(X_{i}) = \frac{n}{p} \qquad \text{Var}(X) = \sum_{i} \text{Var}(X_{i}) = \frac{n(1-p)}{p^{2}}$$

Chebyshev's Inequality – Coin Flips

"How many times does Alice need to flip a biased coin <u>until she sees heads n</u> times, if heads occurs with probability p?

$$\mathbb{E}(X) = \mathbb{E}\left(\sum_{i} X_{i}\right) = \sum_{i} \mathbb{E}(X_{i}) = \frac{n}{p} \quad \operatorname{Var}(X) = \sum_{i} \operatorname{Var}(X_{i}) = \frac{n(1-p)}{p^{2}}$$

What is the probability that $X \ge 2\mathbb{E}(X) = 2n/p$?

Markov:
$$\mathbb{P}(X \ge 2n/p) \le \frac{\mathbb{E}(X)}{2n/p} = \frac{n}{p} \cdot \frac{p}{2n} = \frac{1}{2}$$

Chebyshev: $\mathbb{P}(X \ge 2n/p) \le \mathbb{P}\left(\left|X - \frac{n}{p}\right| \ge \frac{n}{p}\right) \le \frac{\operatorname{Var}(X)}{n^2/p^2} = \frac{1-p}{n}$
Goes to zero as $n \to \infty$ \Im

Something different ...

Example – Number of Samples is a Random Variable

Consider the following.

- We roll a die twice, and sum the outcomes.
 - Result is random variable $N \in \{2, ..., 12\}$
- Then, we flip *N* independent coins, each with heads with probability *p X_i* is Bernoulli indicator variable, 1 if *i*-th coin is heads.

Q: What is the expectation of $X_1 + \cdots + X_N$?

<u>Problem:</u> Linearity cannot be used directly, because number of terms is a random variable itself! We cannot just write $N \cdot p$

Conditional Expectation

Definition. The **expectation** of *X* conditioned on event \mathcal{A} is $\mathbb{E}(X|\mathcal{A}) = \sum_{x} x \cdot \mathbb{P}(X = x|\mathcal{A})$

Theorem. (Law of total expectation). If $\mathcal{A}_1, \ldots, \mathcal{A}_n$ partition the sample space Ω , then

$$\mathbb{E}(X) = \sum_{i=1}^{n} \mathbb{P}(\mathcal{A}_{i}) \cdot \mathbb{E}(X|\mathcal{A}_{i})$$

Law of Total Expectation – Proof

$$\mathbb{E}(X) = \sum_{x} \mathbb{P}(X = x) \cdot x$$

= $\sum_{x} \left(\sum_{i=1}^{n} \mathbb{P}(X = x | \mathcal{A}_{i}) \cdot \mathbb{P}(\mathcal{A}_{i}) \right) \cdot x$
= $\sum_{i=1}^{n} \mathbb{P}(\mathcal{A}_{i}) \sum_{x} (\mathbb{P}(X = x | \mathcal{A}_{i}) \cdot x)$
= $\sum_{i=1}^{n} \mathbb{P}(\mathcal{A}_{i}) \cdot \mathbb{E}(X | \mathcal{A}_{i})$

Theorem. (Law of total expectation). If $\mathcal{A}_1, \dots, \mathcal{A}_n$ partition the sample space Ω , then $\mathbb{E}(X) = \sum_{i=1}^n \mathbb{P}(\mathcal{A}_i) \cdot \mathbb{E}(X|\mathcal{A}_i)$

Law of total probability

Example – Number of Samples is a Random Variable

- Sum two fair dice rolls $N \in \{2, ..., 12\}$
- N independent Bernoulli X_1, \ldots, X_N with parameter p

$$\mathbb{E}(X_{1} + \dots + X_{N}) = \sum_{i=2}^{12} \mathbb{P}(N = i) \cdot \mathbb{E}(X_{1} + \dots + X_{N} | N = i)$$

= $\sum_{i=2}^{12} \mathbb{P}(N = i) \cdot \mathbb{E}(X_{1} + \dots + X_{i})$
= $\sum_{i=2}^{12} \mathbb{P}(N = i) \cdot ip = p \sum_{i=2}^{12} \mathbb{P}(N = i) \cdot i = p \mathbb{E}(N) = 7p$