CSE 312 Foundations of Computing II

Lecture 13: Variance and Independent Random Variables

tessaro@cs.washington.edu

Functions of Random Variables

Sometimes, a random variable is a function of one or more other random variables. Examples:

- X + Y
- X²
- $X^2 + XY$

$$Z = g(X, Y, \dots)$$

- \sqrt{X}
- $e^X Y^2$

Bottom line: You can compute with them, but handle with care!

Functions of Random Variables – Example 1

Let *X* be the outcome of a fair die.

• Then, X^2 is the random variable which takes values 1,4,9,16,25,36 with probability $\frac{1}{6}$ each.

$$\mathbb{E}(X^2) = \sum_x x^2 \cdot \mathbb{P}(X = x)$$
$$= \frac{1}{6}(1 + 4 + 9 + 16 + 25 + 36) = \frac{91}{6}$$

Functions of Random Variables – Example 2

Let *X*, *Y* be outcomes of two dice rolls

$$\mathbb{E}[g(X,Y)] = \sum_{x,y} g(x,y) \cdot \mathbb{P}(X = x, Y = y)$$

$$\mathbb{E}[(X+2Y)^2] = \sum_{x,y} (x+2y)^2 \cdot \mathbb{P}(X=x, Y=y) = \cdots$$

Also note: $(X + 2Y)^2 = X^2 + 4XY + 4Y^2$, and thus

 $\mathbb{E}[(X+2Y)^2] = \mathbb{E}[X^2 + 4XY + 4Y^2] = \mathbb{E}(X^2) + 4\mathbb{E}(XY) + 4\mathbb{E}(Y^2)$ (by linearity)

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

 W_1 = payoff in a round of Game 1 $\mathbb{P}(W_1 = 2) = \frac{1}{3}$, $\mathbb{P}(W_1 = -1) = \frac{2}{3}$

$$\mathbb{E}(W_1)=0$$

Game 2: In every round, you win \$10 with probability 1/3, lose \$5 with probability 2/3.

 W_2 = payoff in a round of Game 2 $\mathbb{P}(W_2 = 10) = \frac{1}{3}$, $\mathbb{P}(W_2 = -5) = \frac{2}{3}$ Which game would you <u>rather play</u>?

 $\mathbb{E}(W_2)=0$

Somehow, Game 2 has higher volatility / exposure!

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$$

$$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

$$\mathbb{P}(W_2 = 10) = \frac{1}{3}, \mathbb{P}(W_2 = -5) = \frac{2}{3}$$

6

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$$

$$\mathbb{E}(W_1) = 0$$

$$\frac{1}{3} = \frac{1}{3} = \frac{1}{3}$$

$$\frac{1}{2/3} = \frac{1}{3} = \frac{1}{3}$$

New quantity: How far off the expectation is the outcome? $\Delta(W_1) = |W_1 - \mathbb{E}(W_1)|$ $\mathbb{P}(\Delta(W_1) = 1) = \frac{2}{3}$ $\mathbb{E}(\Delta(W_1)) = \frac{2}{3} \cdot 1 + \frac{1}{3} \cdot 2 = \frac{4}{3}$

$$\mathbb{P}(W_2 = 10) = \frac{1}{3}, \mathbb{P}(W_2 = -5) = \frac{2}{3}$$

New quantity: How far off the expectation is the outcome? $\Delta(W_2) = |W_2 - \mathbb{E}(W_2)|$

$$\mathbb{P}(\Delta(W_2) = 5) = \frac{2}{3}$$
$$\mathbb{P}(\Delta(W_2) = 10) = \frac{1}{3}$$

$$\mathbb{E}(\Delta(W_2)) = \frac{2}{3} \cdot 5 + \frac{1}{3} \cdot 10 = \frac{20}{3}$$

We say that W_2 has "higher variance" than W_1 .

However: Better to express deviation of outcome as $(X - \mathbb{E}(X))^2$, instead of $|X - \mathbb{E}(X)|$... "Penalizes" big deviations + better analytical properties.

Variance

Definition. The **variance** of a (discrete) RV *X* is

$$\operatorname{Var}(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right] = \sum_{x} \mathbb{P}_X(x) \cdot \left(x - \mathbb{E}(X)\right)^2$$

Standard deviation: $\sigma(X) = \sqrt{Var(X)}$

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}(X) = 3.5$

$$\operatorname{Var}(X) = \frac{1}{6} [(1 - 3.5)^2 + (2 - 3.5)^2 + (3 - 3.5)^2 + (4 - 3.5)^2 + (5 - 3.5)^2 + (6 - 3.5)^2]$$
$$= \frac{2}{6} [2.5^2 + 1.5^2 + 0.5^2] = \frac{2}{6} [\frac{25}{4} + \frac{9}{4} + \frac{1}{4}] = \frac{35}{12} \approx 2.91677 \dots$$

Sections: General case + multiple rolls!

Variance – Example 2

X Bernoulli with parameter *p*

- $\mathbb{P}(X = 1) = p, \mathbb{P}(X = 0) = 1 p$
- $\mathbb{E}(X) = p$

$$Var(X) = p(1 - \mathbb{E}(X))^{2} + (1 - p)(0 - \mathbb{E}(X))^{2}$$
$$= p(1 - p)^{2} + (1 - p)p^{2}$$
$$= p(1 - p)(p + (1 - p)) = p(1 - p)$$

Variance – Properties

Definition. The **variance** of a (discrete) RV *X* is

$$\operatorname{Var}(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right] = \sum_{x} \mathbb{P}_X(x) \cdot \left(x - \mathbb{E}(X)\right)^2$$

Theorem. For any $a \in \mathbb{R}$, $Var(a \cdot X) = a^2 \cdot Var(X)$

(Proof: Exercise!)

Theorem. $Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

Variance

Theorem. $Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

Proof:
$$\operatorname{Var}(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right]$$

$$= \mathbb{E}[X^2 - 2\mathbb{E}(X) \cdot X + \mathbb{E}(X)^2]$$

$$= \mathbb{E}(X^2) - 2\mathbb{E}(X)\mathbb{E}(X) + \mathbb{E}(X)^2$$

$$= \mathbb{E}(X^2) - \mathbb{E}(X)^2 \qquad (\text{Repeated use of linearity!})$$

Independent Random Variables

Definition. Two random variables *X*, *Y* are **(mutually) independent** if for all *x*, *y*,

$$\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y)$$

Definition. The random variables $X_1, ..., X_n$ are (mutually) independent if for all $x_1, ..., x_n$, $\mathbb{P}(X_1 = x_1, ..., X_n = x_n) = \mathbb{P}(X_1 = x_1) \cdots \mathbb{P}(X_n = x_n)$

Note: No need to check for all subsets, but need to check for all outcomes!

Independence – Variance and Expectation

Theorem. If *X*, *Y* independent, $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$

Theorem. If *X*, *Y* independent, Var(X + Y) = Var(X) + Var(Y)

Example – Coin Tosses

We flip n coins, each one heads with probability p

- $X_i = \begin{cases} 1, \ i-\text{th outcome is heads} \\ 0, \ i-\text{th outcome is tails.} \end{cases}$
- Z = number of heads

Fact. $Z = \sum_{i=1}^{n} X_i$

$$\mathbb{P}(X_i = 1) = p$$

$$\mathbb{P}(X_i = 0) = 1 - p$$

"Bernoulli distributed"

Binomial:
$$\mathbb{P}(Z = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Note: $X_1, ..., X_n$ are <u>mutually</u> independent! [Verify it formally!] Var $(Z) = \sum_{i=1}^{n} Var(X_i) = n \cdot p(1-p)$

Independence – Expectation

Theorem. If *X*, *Y* independent, $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$

$$E(X \cdot Y) = \sum_{x,y} x \cdot y \cdot \mathbb{P}(X = x, Y = y)$$

= $\sum_{x,y} x \cdot y \cdot \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y)$
= $\left(\sum_{x} x \cdot \mathbb{P}(X = x)\right) \left(\sum_{y} y \cdot \mathbb{P}(Y = y)\right) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$

18

Independence – Variance

Theorem. If *X*, *Y* independent, Var(X + Y) = Var(X) + Var(Y)

 $Var(X + Y) = \mathbb{E}[(X + Y)^{2}] - \mathbb{E}(X + Y)^{2}$ = $\mathbb{E}[X^{2} + 2XY + Y^{2}] - (\mathbb{E}(X) + \mathbb{E}(Y))^{2}$ = $\mathbb{E}(X^{2}) + 2\mathbb{E}(XY) + \mathbb{E}(Y^{2}) - \mathbb{E}(X)^{2} - 2\mathbb{E}(X)\mathbb{E}(Y) - \mathbb{E}(Y)^{2}$ = $\mathbb{E}(X^{2}) - \mathbb{E}(X)^{2} + \mathbb{E}(Y^{2}) - \mathbb{E}(Y)^{2} = Var(X) + Var(Y)$

Distributions – Recap

Name	Pars	Range	PMF	Expectation	Variance
Bernoulli	p	{0,1}	p(1) = p, p(0) = 1 - p	p	p(1-p)
Geometric	p	$\{1,2,3,\} = \mathbb{N}^+$	$\mathbb{p}(i) = (1-p)^{i-1}p$	1/p	$(1-p)/p^2$
Binomial	n , p	{0,1,, n }	$\mathbb{p}(k) = \binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)

