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Random Variables

Definition. A random variable (RV) for a probability space
- (Q,P)isafunction X:Q - R.*

Example. Throwing two dice

X)) =i+]
V() =i
20 =

—

— Random variables!
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* random variables outputting

values from a non-numeric set can

also be defined. 5



Random Variables and the Probability Space

Random variables partition the sample space.

X(w) = x4

X: Q- R

X(w) = x4

X(w) = x5



Probability Mass Function

_________________________________________________________________________________________________________________________________________________________________

Definition. The range of a random variable X: () — R is

X(Q) = {X(w) | w € O}

i.e., the set of values the random variable can take. If this set is
~ countable, the RV is discrete.

Definition. The probability mass function (PMF) of a discrete
RV X: Q) — Ris the function py: X (1) — R such that for all x € X(Q):

px(x) = P(X = x)

(often, just the “distribution of X*)



Example - Two Dice
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Multiple Dice Throw
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Source: wolfram.com



Example - Number of Heads
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px(k) = PX = k) = () - p* - (1 = p)"

Binomial distribution with parameters n and p. Denoted Bin(n, p)



Random Variables as Abstraction

* Often, different probability spaces give random variables
with the same distribution.

* We often want to make statements that only depend on the
PMF, and hence apply to any of these experiments.



Expectation ,
Alternatively: expected value / mean (But NOT “average”)
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Definition. The expec’Eation of a (discrete) RV X is

E[X] = 2xx - px(x) = 2xx - P(X = x)

Example. Outcome X of rolling one dice
1
px(1) = px(2) = --- = px(6) = 6

E[X] =1 1+2 1+3 1+4 1+5 1+6 1 —21—35
6 6 6 6 6 NG e

For the equally-likely outcomes case, this is just the average of the possible outcomes!
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Expectation

 Definition. The expectation of a (discrete) RV X is

E[X] = 2xx - px(x) = 2y x - P(X = x)

Example. Random variable Z with

pz(—1) =pz(1) =

N| =
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Another Interpretation

“If X is how much you win playing the game in one round. How much
would you expect to win, on average, per game, when repeatedly

playing?”
Answer: [£| X |

e.g., two dice rolls, outcome = s win - $3.5 per round win on avg

-1/1 with probability ¥ each — $0 per round win on avg.
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Word of warning

Two very different random variables X and Y can have the
same expectation E[X]| = E[Y].

* Expectation is useful, but insufficient to usefully characterize
behavior of a random variable.

12



Example 1. Two independent coin
tosses. X = # of heads

px(0) = % px(1) = % px(2) = %

EX] =~ 042142 2=ats=1
XI=7 045 4 “ 72727

1
4
Example 2. Two completely

correlated tosses. Y = # of heads

1

py(0) =py(2) =7

1
0+5:2=0+1=1
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Example — Number of trials

X = # of independent coin tosses until we get heads (heads w/ prob p)

P(X=1)=p |
PX=2)=0-pp P

px(l)
P(X =3)=(1-p)p

p = 0.3

PX=0)=01-p)" 'p

l

‘“Geometric distribution” »



Expectation - Geometric Random Variable

E[X] = ) i-(1-p)7'p P(X = 1) = (1-p)'p
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Expectation — Binomial Random Variable

We flip n coins, independently, each heads with probability p
Y = # of heads

P(Y = k) = (Z) @ e (Il = "
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Expectation - How not to compute it ...

n
n P(Y = k) = (k) p* - (L-p)"
n
E[Y] = ) k- (,)p (-

- n! : - n! i
:Zk'k!(n—k)!pk(l_p) ' :;(k—l)!(n—k)!pk(l_p) '
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(n—1)! _ }

= np z = Din =01 p“t(1—p)n* This is only for reference! - we

k=1 will show next week how to
| nz—:l (n — 1)! 1 — Bk really solve this elegantly.
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Multiple Random Variables

We can define several random variables in the same probability space.

Example:

e X = outcome of 1st dice roll
(joint) probability that

* Y = outcome of 2nd dice roll %= el =y

e / =sum of both dice rolls

Probability that Notation:

X=x | P =x,Y =y) = P(X =1} N {Y = y})
conditionedon T ~PX=x|Y=y)=PHAX =x} |{Y =y})
Y=y
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Multiple Random Variables f\'°§&°2‘ XY =y)=P{X =x}n{Y =y}

- PX=x|Y=y)=PAX =x} Y =y})

Example:

X = outcome of 1st dice roll
Y = outcome of 2nd dice roll
e / = sum of both dice rolls

e.g. P(X =3,Z =6) =P{3,3)) = %
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Multiple Random Variables

We roll a dice 2 times. X; = # of times i appears

Joint PMF for X; and X,

“ 2/9  1/36 Table entries:

2/9  1/18 0 P(X; =a,X, =b)foralla,b € {0,1,2}

B o

X2



