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Machine Learning

Used to derive decision rules from data, where no clear set of
rules apply.

* |s this the picture of a cat or of a dog?
* Should the car slow down?

* |Is this e-mail spam?

* Which digit is in this picture?

* What is the translation of this text?

* Does this patient have disease X?

* Where are the faces on this picture?



Setting — Supervised Learning
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Today - Naive Bayes Algorithm

Classifier based on Bayes Rule.

Canonical application: Spam filtering

* used by Gmail, Bogofilter, DSPAM, SpamBayes, ASSP, CRM114.Mozilla
Thunderbird, Mailwasher, SpamAssassin

But also used for:

* Sentiment analysis in text
* Medical diagnosis

* Market predictions



Dear Sir.

First, | must solicit your confidence in
this transaction, this is by virture of its
nature as being utterly confidencial and

top secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBIJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, | know it was
working pre being stuck in the corner,
but when | plugged it in, hit the power
nothing happened.

Classifier}_b Spam
0.89
Classifier}_b Spam
0.93
Classifierj_b Ham
0.21




Naive Bayes — Approach

To start our task, we are given training data:

* Several e-mails, labeled spam [ ham
— This needs to be done by someone, often by hand

* Possible features give away whether e-mail is spam or ham
— words in body, subject line, sender, message header, time sent

* Here, simplification: We only look at words in document!



E-mails as word collections

Set of words in

E-mail
document

SUBJECT: Top Secret Business ,
Venture {top, secret, business,

venture, dear, sir, first, |,
must, solicit, your,

confidence, in, this,

First, | must solicit your confidence transaction, is, by, virture,
in this transaction, this is by virture

of its nature as being utterly
confidencial and top secret...

Dear Sir.

of, its, nature, as, being,
utterly, confidencial, and}



Naive Bayes

Given document with set of words {w; ..., w,, }

___________________________________________________________________________________________________________________________________________________________________

How to compute?

Idea: Use Bayes Rule

P(spam) - P({wy, ..., w,} | spam)

P(spam | {wy..., wn}) = P(spam) - P({wy, ..., wy} | spam) + P(ham) - P({wy, ..., wp,} | ham)

How do we compute the individual values? Estimate from training data!
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Naive Bayes - Estimating Parameters

P(spam) - P({wy, ..., w,,} | spam)
P(spam) - P({wy, ..., w,,} | spam) + P(ham) - P({wy, ..., w,;} | ham)

P(spam | {w;...,w,}) =

Estimate from training data!

# spam emails in training data

P(spam) = P(ham) = 1 — P(spam)

#emails in training data

P({w1, ..., wn} | spam) =? } Problem: We likely do not have a document
P({wy, ..., Wy} | ham) =? with words {w; ..., w, } in training data!



______________________________________________________________________________________________

Definition. A and B independent conditioned on C

Naive Bayes — Assumption P(A N B|C) = P(AIC) - P(B|C)

_______________________________________________________________________________________________

Conditional independence, i.e., conditioned on spam [ ham,
occurrences of individual words are independent.

n
P({wy, ..., w,} | spam) = 1_[ P(w; | spam)
i=1

P({wy, ..., wy,} | ham) = 1_[ P(w; | ham)
=1

Note: This is a strong assumption (hence, ’naive”) — works just well in
practice.
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Naive Bayes - Estimating Parameters

P(spam) - P({wy, ..., w, } | spam)
P(spam) - P({wy, ..., w,} | spam) + P(ham) - P({wy, ..., w,} | ham)

P(spam | {wy...,wpn}) =

# spam emails in training data

Epei) = #emails in training data 1P(loemm)) = 1 = 1(gpen)

n
# spam emails in TD with w;

P(w; | spam) = Fopamemals POV wi} | spam) = 1_1[ P(w; | spam)

1=
#h ils in TD with -
am emalls 1n with w;
P(w; | ham) = : ' P({wy, ..., w,} | ham) = 1_[ P(w; | ham)
# ham emails o
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Does this work?

Imagine no spam e-mail in training set contains the word “Hullaballoo”, but
one ham e-mails contains it.

What is the problem?

# spam emails in TD with “Hullaballoo”
P(“Hullaballoo”| spam) = _ =0
# spam emails

Recall: P({wy, ...,wy,} | spam) = [[}L, P(w; | spam)

SUBJECT: Get out of debt! Cheap
prescription pills! Earn fast cash

using this one weird trick! Meet ‘ B
singles near you and get P(spam | {w;...,wn}) = 0

preapproved for a low interest

credit card! Hullaballoo 5



Laplace Smoothing

Idea: Add two dummy spam e-mails. One contains every word
appearing in training set, one contains none!

# spam emails in TD with w; + 1

P(w, —
(Wi | spam) # spam emails + 2
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Project - Try it out yourself!

Project will be posted on Friday night

* Due on Nov 6 (tentative)

* Optional - but if submitted, will give small homework
iIncentive.

* More information on Friday on edstem.
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Next: Random Variables
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Random Variables - First encounter

Often: We want to capture quantitative properties of the
outcome of a random experiment, e.g.:

* What is the total of two dice rolls?

* What is the number of coin tosses needed to see the first
head?

* What is the number of heads among 20 coin tosses?
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Random Variables

Definition. A random variable (RV) for a probability space
- (Q,P) is afunction X: () — R.*

Example. Throwing two dice

X)) =i+)
V() =i
Z(i,j) =1

—

— Random variables!

a={Gplijelely  P(G)) =52

* random variables outputting

values from a non-numeric set can

also be defined. 17



Random Variables

Definition. For a RV X, we define the event
{X=x}={w e | X(w) = x}

We write P(X = x) = P({X = x}).

Example. X(i,j) =i+
1 1
P(X = 4) = P({(1,3),(3,1),(2,2)}) = 3Xge =

PX = 3) = P(((12), (2,1)}) = 2% — = — = —
(_ )_ ({(1)1(1)})— X%—g_ﬁ

1 1
P(X =2)=P{(1,1)}) = Ix e =3¢ 18



Random Variables

Definition. For a RV X, we define the event
i X=x}={we | X(w)=x}
We write P(X = x) = P({X = x}).

Example. Z(i,j) = i

1
P(Z = 2) = P({(21),(2,2),(23),(2:4),(25), 2.6)) =
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Example - Number of Heads

We flip n coins, independently, each heads with probability p

Q={HH---HH,HH---HT,HH---TH, ..., TT --- TT}

X = # of heads

P(X = k) = () -p*- (1= p)" "

N

# of sequences with k heads Prob of sequence w/ k heads
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Random Variables and the Probability Space

Random variables partition the sample space.

X(w) = x4

X: Q- R

X(w) = x5

X(w) = x4
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Distribution of Random Variable

—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

Definition. The range of a random variable X: () — Ris
X)) = {X(w) |w € O}

i.e., the set of values the random variable can take.

_________________________________________________________________________________________________________________________________________________________________

Definition. The probability mass function (PMF) of a RV X: Q — Riis
the function py: X (Q)) — R such that for all x € X(Q):

px(x) = P(X = x)

Note: )., ny(x) =1
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Example - Two Dice
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Multiple Dice Throw
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Example - Number of Heads
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= Binomial distribution with parameters n and p. Denoted Bin(n, p)

px(k) = PX = k) = () - p* - (1 = p)"
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Random Variables as Abstraction

* Often, very different probability spaces give rise to random
variables with the same distribution.

* We often want to make statements that only depend on the
PMF of a random variable, and hence apply to any of these
experiments.

* We write X~ p to say that X is distributed according to p.
— E.g. X~ Bin(n, p)
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