CSE 312
Foundations of Computing II

Lecture 1: Welcome & Introduction

Stefano Tessaro
tessaro@cs.washington.edu
Foundations of Computing II

=

Introduction to Probability & Statistics
for computer scientists

What is probability??
Why probability?!
Probability

- Complexity theory
- Data compression
- Computational Biology
- Machine Learning
- Big data
- Fault-tolerant systems
- Algorithms
- Data Structures
- Congestion control
- Natural Language Processing
- Cryptography
- Load Balancing
- Error-correcting codes

+ much more!
CSE 312 team

Stefano Tessaro
tessaro@cs

Leonid Baraznenok
barazl@cs

Duowen (Justin) Chen
chendw98@cs

Kushal Jhunjhunwalla
kushaljh@cs

Tina Kelly Li
tinakli@cs

Siva N. Ramamoorthy
sivanr@cs

Su Ye
yes23@cs

Zhanhao Zhang
zhangz73@cs

Cryptographer, Associate Professor @ Allen School since Jan 2019.
Most important info

https://courses.cs.washington.edu/courses/cse312/19au/

tl;dr:
• **Weekly Homework**, starting next week, Wed – Wed schedule. Submissions via Gradescope only, individual submissions.
• **Weekly Quiz Sessions**, starting tomorrow. Short review + in-class assignment, posted one day in advance. Do attend them.
• Office hours on M/T/W.
• Midterm on **Friday 11/1**.
• Grade (approx.): 50% HW, 15% midterm, 35% final
• **Panopto** is activated – not a replacement for class attendance!
Class materials + textbook

I will use slides. These will be available online.
Review: Sets and Sequences
Sets

“Definition.” A set is a collection of (distinct) elements from a universe Ω.

Order irrelevant: \(\{1,2,3\} = \{3,1,2\} = \{3,2,1\} = \{1,3,2\} = \cdots \)

No repetitions: \(\{1,2,2,3\} = \{1,2,3\} \)

Notation:
- \(x \in S \): \(x \) belongs to / is an element of \(S \)
- \(x \notin S \): \(x \) does not belong to / is not an element of \(S \)
- \(|S| \): size / cardinality of \(S \)
Definition. $A \subseteq B$ if $\forall x: x \in A \Rightarrow x \in B$

Examples:
- $\{1,2,3\} \subseteq \{1,2,3,5\}$
- $\{1,2,3\} \subseteq \{1,2,3\}$
- $\{1,2,3\} \not\subset \{1,2,4\}$

Definition. $A \subset B$ if $A \subseteq B \land A \neq B$

Examples:
- $\{1,2,3\} \subset \{1,2,3,5\}$
- $\{1,2,3\} \not\subset \{1,2,3\}$
- $\{1,2,3\} \not\subset \{1,2,4\}$
Common sets

- Empty set: \(\emptyset \)
- First \(n \) integers: \([n] = \{1, 2, \ldots, n\}\)
- Integers: \(\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}\)
- Naturals: \(\mathbb{N} = \{0, 1, 2, 3, \ldots\}\)
- Reals: \(\mathbb{R}\) (aka. points on the real line)
- Rationals: \(\mathbb{Q} = \left\{ \frac{a}{b} \in \mathbb{R} \mid a, b \in \mathbb{Z}, b \neq 0 \right\}\)
Implicit descriptions

Often, sets are described implicitly.

\[S_1 = \{a \in \mathbb{N} \mid 1 \leq a \leq 7\} \]

What is this set? \(S_1 = \{1,2,3,4,5,6,7\} \)

\[S_2 = \{a \in \mathbb{N} \mid \exists k \in \mathbb{N}: a = 2k + 1\} \]

What is this set? \(S_2 = \{1,3,5,7,\ldots\} = \text{the odd naturals} \)
Set operations

\[A \cup B = \{x \mid x \in A \lor x \in B\} \]

set union

\[A \cap B = \{x \mid x \in A \land x \in B\} \]

set intersection

\[A \setminus B = \{x \mid x \in A \land x \notin B\} \]

set difference

[Sometimes also: \(A - B \)]
Set operations (cont’d)

\[A^c = \{ x \mid x \notin A \} = \Omega \setminus A \]

set complement

[Sometimes also: \(\overline{A} \)]

Fact 1. \((A^c)^c = A.\)

Fact 2. \((A \cup B)^c = A^c \cap B^c.\)

Fact 3. \((A \cap B)^c = A^c \cup B^c.\)

“De Morgan’s Laws”
Sequences

A (finite) **sequence** (or **tuple**) is an (ordered) list of elements.

Order matters: \((1,2,3) \neq (3,2,1) \neq (1,3,2)\)
Repetitions matter: \((1,2,3) \neq (1,2,2,3) \neq (1,1,2,3)\)

Definition. The **cartesian product** of two sets \(S, T\) is

\[
S \times T = \{(a, b): a \in S, b \in T\}
\]

Equivalent naming: 2-sequence = 2-tuple = ordered pair.
Definition. The cartesian product of two sets S, T is

$$S \times T = \{(a, b): a \in S, b \in T\}$$

Example.

$$\{1, 2, 3\} \times \{\ast, \spadesuit\} = \{(1, \ast), (2, \ast), (3, \ast), (1, \spadesuit), (2, \spadesuit), (3, \spadesuit)\}$$
Cartesian product – even more notation

\[S \times T \times U = \{(a, b, c) : a \in S, b \in T, c \in U\} \]

\[S \times T \times U \times V \]

...
Next – Counting (aka ”combinatorics”)

17
We are interested in counting the number of objects with a certain given property. [Weeks 0-1]

“How many ways are there to assign 7 TAs to 5 sections, such that each section is assigned to two TAs, and no TA is assigned to more than two sections?”

“How many integer solutions \((x, y, z) \in \mathbb{Z}^3\) does the equation \(x^3 + y^3 = z^3\) have?”

Generally: Question boils down to computing cardinality \(|S|\) of some given (implicitly defined) set \(S\).
Example – Strings

How many string of length 5 over the alphabet \{A, B, C, ..., Z\} are there?

• E.g., AZURE, BINGO, TANGO, STEVE, SARAH, ...

String = \[
\begin{array}{cccc}
M & A & N & G \\
\end{array}
\]

Answer: \[26^5 = 11881376\]
Product rule – Generally

\[|A_1 \times A_2 \times \cdots \times A_n| = |A_1| \times |A_2| \times \cdots \times |A_n| \]
Example – Strings

How many string of length 5 over the alphabet \{A, B, C, \ldots, Z\} are there?

• E.g., AZURE, BINGO, TANGO, STEVE, SARAH, ...

\[|\{A, B, C, \ldots, Z\}^5| = |\{A, B, C, \ldots, Z\}|^5 = 26^5. \]

Product rule
Example – Laptop customization

Alice wants to buy a new laptop:
• The laptop can be blue, orange, purple, or silver.
• The SSD storage can be 128GB, 256GB, and 512GB.
• The available RAM can be 8GB or 16GB.
• The laptop comes with a 13” or with a 15” screen.

How many different laptop configurations are there?
Example – Laptop customization (cont’d)

\[C = \{ \text{blue, orange, purple, silver} \} \]
\[D = \{ 128GB, 256GB, 512GB \} \]
\[R = \{ 8GB, 16GB \} \]
\[S = \{ 13", 15" \} \]

Configuration = element of \(C \times D \times R \times S \)

\[
\# \text{ configurations} = |C \times D \times R \times S| \\
= |C| \times |D| \times |R| \times |S| \\
= 4 \times 3 \times 2 \times 2 = 48.
\]
Definition. The power set of S is

$$2^S = \{X \mid X \subseteq S\}.$$

Example. $2^{\{\star, ♠\}} = \{\emptyset, \{\star\}, \{♠\}, \{\star, ♠\}\}$

$2^\emptyset = \{\emptyset\}$

...

Proposition. $|2^S| = 2^{|S|}$.
Proof of proposition

Let $S = \{s_1, ..., s_n\}$ (i.e., $|S| = n \geq 1$)

1-to-1 correspondence

subset $X \subseteq S$ \quad \leftrightarrow \quad sequence $1^X \in \{0,1\}^n$

1$_X = (x_1, ..., x_n)$ where $x_i = \begin{cases} 1 & \text{if } s_i \in X \\ 0 & \text{if } s_i \notin X \end{cases}$

Therefore: $|2^S| = |\{0,1\}^n| = |\{0,1\}|^n = 2^n$
Sequential process: We fix elements in a sequence one by one, and see how many possibilities we have at each step.

Example: “How many sequences are there in \(\{1,2,3\}^3 \) ?”

27 paths = 27 sequences
Example: “How many sequences are there in \(\{1,2,3\}^3 \) with no repeating elements?”
Factorial

“How many sequences in \([n]^n\) with no repeating elements?”

Answer = \(n \times (n - 1) \times (n - 2) \times \cdots \times 2 \times 1\)

Definition. The factorial function is

\[n! = n \times (n - 1) \times \cdots \times 2 \times 1. \]

Theorem. (Stirling’s approximation)

\[
\sqrt{2\pi} \cdot n^{n+\frac{1}{2}} \cdot e^{-n} \leq n! \leq e \cdot n^{n+\frac{1}{2}} \cdot e^{-n}.
\]

\[
= 2.5066 \quad \text{and} \quad = 2.7183
\]