Quiz Section 9

Task 1 – MLE for Gaussians

- a) Suppose x_1, x_2, \ldots, x_n are samples from a normal distribution whose mean is known to be zero, but whose variance is unknown. What is the maximum likelihood estimator for its variance?
- **b)** Suppose the mean is known to be *μ* but the variance is unknown. How does the maximum likelihood estimator for the variance differ from the maximum likelihood estimator when both mean and variance are unknown?

Task 2 – MLE Computation

Let $f(x \mid \theta) = \theta x^{\theta-1}$ for $0 \le x \le 1$, where θ is any positive real number. Let x_1, x_2, \ldots, x_n be i.i.d. samples from this distribution. Derive the maximum likelihood estimator $\hat{\theta}$.

Task 3 – Confidence Interval

Suppose X_1, \ldots, X_n are identically distributed independent random variables with unknown mean θ , and known variance σ^2 . Our estimate $\hat{\theta}$ for the mean θ is the sample mean

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i \; .$$

For any α , we want to derive a $100(1 - \alpha)\%$ confidence interval (centered around $\hat{\theta}$) for the true parameter θ , i.e., we are looking for the *smallest* Δ such that

$$\mathbb{P}\left(\widehat{\theta} - \Delta \leqslant \theta \leqslant \widehat{\theta} + \Delta\right) \ge 1 - \alpha \; .$$

You may assume n to be sufficiently large for the CLT to apply.

Task 4 – Biased Estimator

Suppose that $\hat{\theta}$ is a biased estimator for θ with $\mathbb{E}(\hat{\theta}) = \alpha \theta$, for some constant $\alpha > 0$. Find an unbiased estimator for θ and prove that it is unbiased.