Quiz Section 4

Review

1) Probability Mass. For every random variable X, we have $\sum_x P(X = x) = \underline{1}$.

2) Expectation. $E(X) = \underline{}$.

3) Linearity of expectation. For any random variables X_1, \ldots, X_n, and real numbers a_1, \ldots, a_n,

$$E(a_1 X_1 + \cdots + a_n X_n) = \underline{}$$

4) Variance. $Var(X) = \underline{}$.

5) Independence. Two random variables X and Y are independent if $\underline{}$.

6) Variance and Independence. For any two independent random variables X and Y,

$$Var(X + Y) = \underline{}$$

Task 1 – Random Variables

Assume that we roll a fair 3-sided die three times. Here, the sides have values 1, 2, 3.

a) Describe the PMF of the random variable X giving the sum of the first two rolls.

- We have $P(X = 2) = 1/9$, $P(X = 3) = 2/9$, $P(X = 4) = 3/9$, $P(X = 5) = 2/9$, and $P(X = 6) = 1/9$.

b) Give the expectation $E(X)$.

- We give a direct proof here, and note that

$$E(X) = 1/9 \cdot (2 + 6) + 2/9 \cdot (3 + 5) + 3/9 \cdot 4 = (8 + 16 + 12)/9 = 4$$

- $\underline{e)}$ Compute $P(X > 3)$.

$$P(X > 3) = 3/9 + 2/9 + 1/9 = 6/9 = 2/3$$

- $\underline{d)}$ Let Y be the random variable describing the sum of the three rolls. Describe the joint PMF of X and Y.

- \[
\begin{array}{c|cccccccc}
X / Y & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 1/27 & 1/27 & 1/27 & 0 & 0 & 0 & 0 \\
3 & 0 & 2/27 & 2/27 & 2/27 & 0 & 0 & 0 \\
4 & 0 & 0 & 3/27 & 3/27 & 3/27 & 0 & 0 \\
5 & 0 & 0 & 0 & 2/27 & 2/27 & 2/27 & 0 \\
6 & 0 & 0 & 0 & 0 & 1/27 & 1/27 & 1/27 \\
\end{array}
\]

- $\underline{e)}$ Compute $P(X = 5 \mid Y = 7)$.
First, \(P(X = 5 \mid Y = 7) = P(X = 5, Y = 7) / P(Y = 7) \). Then, \(P(X = 5, Y = 7) = 2/27 \), whereas
\[
\]
Thus, \(P(X = 5 \mid Y = 7) = 2/27 \cdot 9/2 = 1/3 \).

Task 2 – Servers

A web service uses \(m \) identical servers for load balancing. Every web request is assigned to one of the servers independently and uniformly at random. Assume the web service receives \(n \) requests.

a) For any \(i \in \{1, \ldots, m\} \) and \(j \in \{1, \ldots, n\} \), define the Bernoulli random variable \(X_{i,j} \) which is one if and only the \(j \)-th request is assigned to server \(i \), and zero otherwise.

What is the expected values \(E(X_{i,j}) \)?

Clearly, \(P(X_{i,j} = 1) = \frac{1}{m} \), and thus \(E(X_{i,j}) = 1/m \).

b) What is the expected load of server \(i \in \{1, \ldots, m\} \)?

The load of server \(i \) is \(\sum_{j=1}^{n} X_{i,j} \), and using linearity of expectation, we have
\[
E\left(\sum_{j=1}^{n} X_{i,j} \right) = \sum_{j=1}^{n} E(X_{i,j}) = \frac{n}{m}.
\]

Task 3 – More Linearity

a) Alice rolls a fair, six-sided die \(n \) times, what is the expectation of the sum of the \(n \) outcomes?

Let \(X_i \) denote the outcome of the \(i \)-th die, i.e., \(P(X_i = j) = 1/6 \) for all \(i \in [n] \), and \(j \in [6] \). Then, we know that \(E(X_i) = 3.5 \) for all \(i \in [n] \). Also, the sum of the outcomes is defined as \(Z = \sum_{i=1}^{n} X_i \), and thus
\[
E(Z) = \sum_{i=1}^{n} E(X_i) = 3.5 \cdot n.
\]

b) Bob plays a game where a die is rolled in each round, until 6 comes out. He wins $3 every time 6 does not appear. How much does Bob expect to win?

We first consider a random variable \(R \) which gives us the number of rounds Bob plays. Clearly, \(R \) is geometric, with parameter \(p = 1/6 \). Thus, \(E(R) = 1/p = 6 \). Now, bob will always win \(W = 3(R - 1) \) dollars, and we can now easily compute \(E(W) = E(3R - 3) = 3E(R) - 3 = 15 \), i.e., he expects to win $15.

c) In a room with \(n \) people, how many groups of three people are expected to have the same birthday?

(Assuming birthdays are independent, and equally liked for each of the \(n \) people. Further, assume there are only 365 days.)

There are \(\binom{n}{3} \) groups of three people, i.e., every group of people is represented by a subset \(I \subseteq [n] \) with size \(|I| = 3 \). Now, define \(X_I \) to be the Bernoulli distributed so that it is one if all three people in \(I \) have the same Birthday, and 0 if not. We have that
\[
P(X_I = 1) = \frac{1}{365}, \quad 365 = \frac{1}{365^2},
\]
because there are 365 dates on which the three Birthdays can collide. Thus, \(\mathbb{E}(X_i) = \frac{1}{365} \), and the expected numbers of groups of three people with same Birthdays is

\[
\mathbb{E} \left(\sum_{i} X_i \right) = \sum_{i} \mathbb{E}(X_i) = \left(\frac{n}{3} \right) \cdot 1/(365)^2 .
\]

Task 4 – Expectations, Independence, and Variance

a) Give random variables \(X \) and \(Y \) (via their joint PMF) such that \(\mathbb{E}(X \cdot Y) \neq \mathbb{E}(X) \cdot \mathbb{E}(Y) \).

Imagine we flip two correlated coins – they are both heads with probability 1/2 and both tails with probability 1/2. Let \(X \) (resp. \(Y \)) be 1 if and only if the first (resp. second) coin is heads, and 0 otherwise. Then, \(\mathbb{P}(X \cdot Y = 1) = \frac{1}{4} \), and \(\mathbb{P}(X \cdot Y = 0) = \frac{1}{2} \). Thus, \(\mathbb{E}(X \cdot Y) = \frac{1}{2} \).

On the other hand, the individual coins are uniform, and thus \(\mathbb{E}(X) = \mathbb{E}(Y) = \frac{1}{2} \). And, \(\frac{1}{2} \neq \frac{1}{2} \cdot \frac{1}{2} \).

b) Give a random variable \(X \) with range \(\{-1, 1\} \) such that \(\mathbb{E}(X)^2 \neq \mathbb{E}(X^2) \).

We can have for instance \(X \) such that \(\mathbb{P}(X = -1) = \mathbb{P}(X = 1) = \frac{1}{2} \). Then, \(\mathbb{E}(X) = 0 \) and thus \(\mathbb{E}(X)^2 = 0 \). On the other hand, \(X^2 \) is 1 with probability 1, and thus \(\mathbb{E}(X^2) = 1 \).

c) Let \(U \) be a random variable which is uniform over the set \(\{n\} = \{1, 2, \ldots, n\} \), i.e, \(\mathbb{P}(U = i) = \frac{1}{n} \) for all \(i \in \{n\} \). Compute \(\mathbb{E}(U^2) \) and \(\text{Var}(U) \).

Hint: \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) and \(\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \).

First off, note that

\[
\mathbb{E}(U^2) = \frac{1}{n} \sum_{i=1}^{n} i^2 = \frac{1}{n} \frac{n(n+1)(2n+1)}{6} = \frac{(n+1)(2n+1)}{6}.
\]

by the hint. Also, note that

\[
\mathbb{E}(U) = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.
\]

Therefore

\[
\text{Var}(U) = \mathbb{E}(U^2) - \mathbb{E}(U)^2 = \frac{(n+1)(2n+1)}{6} - \left(\frac{n+1}{2} \right)^2
\]

\[
= \frac{n+1}{12} \cdot (4n + 2 - 3n - 3) = \frac{(n+1)(n-1)}{12}.
\]

d) Let \(Y_1 \) and \(Y_2 \) be the independent outcomes of two dice rolls, and let \(Z = Y_1 + Y_2 \). Then, compute \(\mathbb{E}(Z^2) \) and \(\text{Var}(Z) \).

Hint: Try to use an indirect solution using linearity and independence, without the need of explicitly giving the distribution of \(Z^2 \).

First note that by linearity and independence,

\[
\mathbb{E}(Z^2) = \mathbb{E}(Y_1^2) + \mathbb{E}(Y_2^2) + 2\mathbb{E}(Y_1 \cdot Y_2) = \mathbb{E}(Y_1^2) + \mathbb{E}(Y_2^2) + 2\mathbb{E}(Y_1) \mathbb{E}(Y_2) .
\]
We know that \(E (Y_1) = E (Y_2) = 21/6 \). We also know that \(E (Y_1^2) = E (Y_2^2) = 91/6 \) (from class). Thus,
\[
E (Z^2) = 91/3 + 2 \cdot 21^2/36 = 91/3 + 147/6 = 329/6.
\]

On the other hand, we know that \(E (Z) = 7 \). Therefore,
\[
\text{Var}(Z) = E (Z^2) - E (Z)^2 = 329/6 - 294/6 = 35/6.
\]

We could also have used \(\text{Var}(Z) = \text{Var}(Y_1 + Y_2) = \text{Var}(Y_1) + \text{Var}(Y_2) = 35/12 \cdot 2 = 35/6 \), using the calculation from class for the individual variances.