CSE 312: Foundations of Computing II Autumn 2019
Inclusion-Exclusion and Derangements

The goal here is to count the number derangements, i.e, the number of bijective (or one-to-one)
functions! 7 : [n] — [n] which have the property that 7(i) # i for all i € [n]. We are after a formula
which is a function of n — call D(n) the number of such derangements. For example, D(3) = 2.
This is easy to see because the only two solutions are

(2,3,1)
and
(3,1,2) .

(Here, (a,b,c) is to be read as 7(1) = a, 7(2) = b, and 7(3) = ¢.) But what about D(n) for an
arbitrary n? We are going to show that D(n) is close to n!/e, where e = 2.71828... is Euler’s
number.

Setting up the problem. Towards using the inclusion-exclusion principle, we need to think of the
set of derangements as being described by the set of 7’s satisfying

(1) #1 A w(2)#2 Am(3)#3 A+ A w(n)#n.
By DeMorgan’s laws, this is equivalent to counting the number of 7’s that do not satisfy
1) =1v n2)=2va3)=3 v--- v a(n)=n.

We formalize this using sets. First of all, let .S, be the set of one-to-one 7 : [n]| — [n]. We know that
|Sp| = n! already. Also, for any i € [n], let

Ai={meS, : w(1) =1} .

Note that we have defined n sets here, A;,...,A,. Now, by the above, we want the set of 7’s
which are in S,,, but notin A; U - -- U A,. In other words,

D(n)=|S\(A41u---UA)| =S —[A1u--- VA =nl—]AUu---UA,, 1)

where the second equality follows from the fact that A; v --- U A, < S, because the A;” s are
defined as subsets of .S,,.

Using inclusion-exclusion. We now want to evaluate (1) above. By the inclusion-exclusion principle,
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To continue, we need to know what |[),.;

A;| is. Note that for any non-empty I < [n], having
7 € [);e; Ai means that w(i) = ¢ for all ¢ € I, but there is no restriction on 7 (j) for j €

[\ -

Recall that [n] is a shorthand for {1,...,n}.



therefore, there are (n — |I|)! ways of choosing 7(j)’s for j € [n|\I. (Remember, we look at 7’s
which are one-to-one!) In other words,

(4| = (n—11))! 3)
1€l
for all non-empty I < [n].
Now, we plug (3) into (2), and obtain
Ao o= > (= - (4)
F#I<[n]

Let us now simplify this. We are summing over all non-empty I < [n] - i.e., there are 2" — 1
summands - and the summand is (—1)**!(n — k)! for any I with size k, regardless of how I
exactly looks like. Moreover, there are (}) such I's for each k € [n]. Therefore, we can instead
write

|Ay U U A = Zn:( 1)k+1< ) Zn: k+1!]€) Zn: k+1n' 5)

k=1

Note that the second equality follows from the definition of the binomial coefficient, and the last
equality follows by simplifying (n — k)! away.

To wrap up, let us plug (5) into (1), and obtain
- n' L n' - n! 2(=1)k
_ Z k:+1 _ 2 k: _ Z(_l)kg —aY ( k') 7 ©)
k=1 k=1 k=0 ’ k=0 '

where the first equality uses that (—1)¥*! = (—1) - (=1)* (and this allows us to “flip” the sign!),
and the second uses the fact that (—1)]f m — 1 for k = 0 — so we have taken-in the n! as the k = 0
term into the sum.

Interpreting this. We are actually done —i.e.,

= n! i (=
k=0

is the best we can expect to prove as an exact formula. However, we can get a feel of what this
means, by observing that for any z,
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converges to e” as n goes to infinity. Therefore, in our case, >;_, ( kl!) 1 =1/cas
n goes to infinity. Which explains why (as we claimed above) D(n) ~ n!/e as n grows large.

In fact, one can do even better, and show that D(n) is always the closest integer to n!/e (the latter
is never an integer).



Was I supposed to come up with it by myself? This goes beyond the type of homework questions
we are going to ask — but it is entirely solvable with the tools from class. The problem was first
posed by Pierre Raymond de Montmort, a French mathematician, in 1708. He only solved it in
1713, and so did Nicholas Bernoulli, a Swiss mathematician, and one out of many Bernoullis who
are famous mathematicians.




