
CSE 312: Foundations of Computing II Autumn 2019

Inclusion-Exclusion and Derangements

The goal here is to count the number derangements, i.e, the number of bijective (or one-to-one)
functions1 π : rns Ñ rns which have the property that πpiq � i for all i P rns. We are after a formula
which is a function of n – call Dpnq the number of such derangements. For example, Dp3q � 2.
This is easy to see because the only two solutions are

p2, 3, 1q

and
p3, 1, 2q .

(Here, pa, b, cq is to be read as πp1q � a, πp2q � b, and πp3q � c.) But what about Dpnq for an
arbitrary n? We are going to show that Dpnq is close to n!{e, where e � 2.71828 . . . is Euler’s
number.

Setting up the problem. Towards using the inclusion-exclusion principle, we need to think of the
set of derangements as being described by the set of π’s satisfying

πp1q � 1 ^ πp2q � 2 ^ πp3q � 3 ^ � � � ^ πpnq � n .

By DeMorgan’s laws, this is equivalent to counting the number of π’s that do not satisfy

πp1q � 1 _ πp2q � 2 _ πp3q � 3 _ � � � _ πpnq � n .

We formalize this using sets. First of all, let Sn be the set of one-to-one π : rns Ñ rns. We know that
|Sn| � n! already. Also, for any i P rns, let

Ai � tπ P Sn : πpiq � iu .

Note that we have defined n sets here, A1, . . . , An. Now, by the above, we want the set of π’s
which are in Sn, but not in A1 Y � � � YAn. In other words,

Dpnq � |SnzpA1 Y � � � YAnq| � |Sn| � |A1 Y � � � YAn| � n!� |A1 Y � � � YAn| , (1)

where the second equality follows from the fact that A1 Y � � � Y An � Sn, because the Ai’ s are
defined as subsets of Sn.

Using inclusion-exclusion. We now want to evaluate (1) above. By the inclusion-exclusion principle,

|A1 Y � � � YAn| �
¸

H�I�rns

p�1q|I|�1

�����
£
iPI

Ai

����� . (2)

To continue, we need to know what |
�

iPI Ai| is. Note that for any non-empty I � rns, having
π P

�
iPI Ai means that πpiq � i for all i P I , but there is no restriction on πpjq for j P rnszI –

1Recall that rns is a shorthand for t1, . . . , nu.
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therefore, there are pn � |I|q! ways of choosing πpjq’s for j P rnszI . (Remember, we look at π’s
which are one-to-one!) In other words,

�����
£
iPI

Ai

����� � pn� |I|q! (3)

for all non-empty I � rns.

Now, we plug (3) into (2), and obtain

|A1 Y � � � YAn| �
¸

H�I�rns

p�1q|I|�1pn� |I|q! . (4)

Let us now simplify this. We are summing over all non-empty I � rns – i.e., there are 2n � 1
summands – and the summand is p�1qk�1pn � kq! for any I with size k, regardless of how I
exactly looks like. Moreover, there are

�
n
k

�
such I’s for each k P rns. Therefore, we can instead

write

|A1 Y � � � YAn| �
ņ

k�1

p�1qk�1

�
n

k



pn�kq! �

ņ

k�1

p�1qk�1 n!

k!pn� kq!
� pn�kq! �

ņ

k�1

p�1qk�1n!

k!
. (5)

Note that the second equality follows from the definition of the binomial coefficient, and the last
equality follows by simplifying pn� kq! away.

To wrap up, let us plug (5) into (1), and obtain

Dpnq � n!�
ņ

k�1

p�1qk�1n!

k!
� n!�

ņ

k�1

p�1qk
n!

k!
�

ņ

k�0

p�1qk
n!

k!
� n!

ņ

k�0

p�1qk

k!
, (6)

where the first equality uses that p�1qk�1 � p�1q � p�1qk (and this allows us to “flip” the sign!),
and the second uses the fact that p�1qk n!

k! � 1 for k � 0 – so we have taken-in the n! as the k � 0
term into the sum.

Interpreting this. We are actually done – i.e.,

Dpnq � n!
ņ

k�0

p�1qk

k!

is the best we can expect to prove as an exact formula. However, we can get a feel of what this
means, by observing that for any x,

ņ

k�0

xk

k!

converges to ex as n goes to infinity. Therefore, in our case,
°n

k�0
p�1qk

k! goes towards e�1 � 1{e as
n goes to infinity. Which explains why (as we claimed above) Dpnq � n!{e as n grows large.

In fact, one can do even better, and show that Dpnq is always the closest integer to n!{e (the latter
is never an integer).
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Was I supposed to come up with it by myself? This goes beyond the type of homework questions
we are going to ask – but it is entirely solvable with the tools from class. The problem was first
posed by Pierre Raymond de Montmort, a French mathematician, in 1708. He only solved it in
1713, and so did Nicholas Bernoulli, a Swiss mathematician, and one out of many Bernoullis who
are famous mathematicians.
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