CSE 312: Foundations of Computing II Quiz Section \#6: Discrete Random Variables

Review: Main Theorems and Concepts

Variance: Let X be a random variable and $\mu=\mathbb{E}[X]$. The variance of X is defined to be $\operatorname{Var}(X)=$. Notice that since this is an expectation of a \qquad random variable $\left((X-\mu)^{2}\right)$, variance is always \qquad . With some algebra, we can simplify this to $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}^{2}[X]$.

Property of Variance: Let $a, b \in \mathbb{R}$ and let X be a random variable. Then, $\operatorname{Var}(a X+b)=$ \qquad .

Independence: Random variables X and Y are independent, written $X \perp Y$, iff

In this case, we have $\mathbb{E}[\mathrm{XY}]=\mathbb{E}[X] \mathbb{E}[Y]$ (the converse is not necessarily true).
i.i.d. (independent and identically distributed): Random variables X_{1}, \ldots, X_{n} are i.i.d. (or iid) iff they are
\qquad and have the same \qquad .

Variance of Independent Variables: If $X \perp Y$, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$. This depends on independence, whereas linearity of expectation always holds. Note that this combined with the above shows that $\forall a, b, c \in \mathbb{R}$ and if $X \perp Y, \operatorname{Var}(a X+b Y+c)=$ \qquad _.

Zoo of Discrete Random Variables

Uniform: $X \sim \operatorname{Unif}(a, b)$, for integers $a \leq b$, iff X has the following probability mass function:

$$
p_{X}(k)=\frac{1}{b-a+1}, \quad k=a, a+1, \ldots, b
$$

$\mathbb{E}[X]=\frac{a+b}{2}$ and $\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}$. This represents each integer from $[a, b]$ to be equally likely. For example, a single roll of a fair die is $\operatorname{Unif}(1,6)$.

Bernoulli (or indicator): $X \sim \operatorname{Ber}(p)$ iff X has the following probability mass function:

$$
p_{X}(k)=\left\{\begin{array}{cc}
p, & k=1 \\
1-p, & k=0
\end{array}\right.
$$

$\mathbb{E}[X]=p$ and $\operatorname{Var}(X)=p(1-p)$. An example of a Bernoulli r.v. is one flip of a coin with $P($ head $)=p$. By a clever trick, we can write

$$
p_{X}(k)=p^{k}(1-p)^{1-k}, \quad k=0,1
$$

Binomial: $X \sim \operatorname{Bin}(n, p)$ iff X is the sum of n iid $\operatorname{Ber}(p)$ random variables. X has probability mass function

$$
p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

$\mathbb{E}[X]=n p$ and $\operatorname{Var}(X)=n p(1-p)$. An example of a Binomial r.v. is the number of heads in n independent flips of a coin with $P($ head $)=p$. Note that $\operatorname{Bin}(1, p) \equiv \operatorname{Ber}(p)$. As $n \rightarrow \infty$ and $p \rightarrow 0$, with $n p=\lambda$, then $\operatorname{Bin}(n, p) \rightarrow \operatorname{Poi}(\lambda)$. If X_{1}, \ldots, X_{n} are independent Binomial r.v.'s, where $X_{i} \sim \operatorname{Bin}\left(N_{i}, p\right)$, then $X=X_{1}+\ldots+X_{n} \sim \operatorname{Bin}\left(N_{1}+\ldots+N_{n}, p\right)$.

Geometric: $X \sim \operatorname{Geo}(p)$ iff X has the following probability mass function:

$$
p_{X}(k)=(1-p)^{k-1} p, \quad k=1,2, \ldots
$$

$\mathbb{E}[X]=\frac{1}{p}$ and $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$. An example of a Geometric r.v. is the number of independent coin flips up to and including the first head, where $P($ head $)=p$.

Negative Binomial: $X \sim \operatorname{Neg} \operatorname{Bin}(r, p)$ iff X is the sum of r iid $\operatorname{Geo}(p)$ random variables. X has probability mass function

$$
p_{X}(k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}, \quad k=r, r+1, \ldots
$$

$\mathbb{E}[X]=\frac{r}{p}$ and $\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$. An example of a Negative Binomial r.v. is the number of independent coin flips up to and including the $r^{\text {th }}$ head, where P (head) $=p$. If X_{1}, \ldots, X_{n} are independent Negative Binomial r.v.'s, where $X_{i} \sim \operatorname{Neg} \operatorname{Bin}\left(r_{i}, p\right)$, then $X=X_{1}+\ldots+X_{n} \sim \operatorname{Neg} \operatorname{Bin}\left(r_{1}+\ldots+r_{n}, p\right)$.

Poisson: $X \sim \operatorname{Poi}(\lambda)$ iff X has the following probability mass function:

$$
p_{X}(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, k=0,1, \ldots
$$

$\mathbb{E}[X]=\lambda$ and $\operatorname{Var}(X)=\lambda$. An example of a Poisson r.v. is the number of people born during a particular minute, where λ is the average birth rate per minute. If X_{1}, \ldots, X_{n} are independent Poisson r.v.'s, where $X_{i} \sim \operatorname{Poi}\left(\lambda_{i}\right)$, then $X=X_{1}+\ldots+X_{n} \sim \operatorname{Poi}\left(\lambda_{1}+\ldots+\lambda_{n}\right)$.

Hypergeometric: $X \sim \operatorname{HypGeo}(N, K, n)$ iff X has the following probability mass function:

$$
p_{X}(k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}, k=\max \{0, n+K-N\}, \ldots, \min \{K, n\}
$$

$\mathbb{E}[X]=n \frac{K}{N}$. This represents the number of successes drawn, when n items are drawn from a bag with N items (K of which are successes, and $N-K$ failures) without replacement. If we did this with replacement, then this scenario would be represented as $\operatorname{Bin}\left(n, \frac{K}{N}\right)$.

Exercises

1. Suppose I am fishing in a pond with B blue fish, R red fish, and G green fish, where $B+R+G=N$. For each of the following scenarios, identify the most appropriate distribution (with parameter(s)):
(a) how many of the next 10 fish I catch are blue, if I catch and release
(b) how many fish I had to catch until my first green fish, if I catch and release
(c) how many red fish I catch in the next five minutes, if I catch on average r red fish per minute
(d) whether or not my next fish is blue
(e) how many of the next 10 fish I catch are blue, if I do not release the fish back to the pond after each catch
(f) how many fish I have to catch until I catch three red fish, if I catch and release
2. Suppose Y_{1}, \ldots, Y_{n} are iid with $\mathbb{E}\left[Y_{i}\right]=\mu$ and $\operatorname{Var}\left(Y_{i}\right)=\sigma^{2}$, and let $Y=\frac{1}{n} \sum_{i=1}^{n} i Y_{i}$. What is $\mathbb{E}[Y]$ and $\operatorname{Var}(Y)$? Recall that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ and $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.
3. Is the following statement true or false? If $\mathbb{E}[\mathrm{XY}]=\mathbb{E}[X] \mathbb{E}[Y]$, then $X \perp Y$. If it is true, prove it. If not, provide a counterexample.
4. Suppose we roll two fair 5-sided dice independently. Let X be the value of the first die, Y be the value of the second die, $Z=X+Y$ be their sum, $U=\min \{X, Y\}$ and $V=\max \{X, Y\}$.
(a) Find $p_{U}(u)$.
(b) Find $\mathbb{E}[U]$.
(c) Find $\mathbb{E}[Z]$.
(d) Find $\mathbb{E}[U V]$.
(e) Find $\operatorname{Var}(U+V)$.
5. Suppose X has the following probability mass function:

$$
p_{X}(x)=\left\{\begin{array}{cc}
c, & x=0 \\
2 c, & x=\frac{\pi}{2} \\
c, & x=\pi \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) Suppose $Y_{1}=\sin (X)$. Find $\mathbb{E}\left[Y_{1}^{2}\right]$.
(b) Suppose $Y_{2}=\cos (X)$. Find $\mathbb{E}\left[Y_{2}^{2}\right]$.
(c) Suppose $Y=Y_{1}^{2}+Y_{2}^{2}=\sin ^{2}(X)+\cos ^{2}(X)$. Before any calculation, what do you think $\mathbb{E}[Y]$ should be? Find $\mathbb{E}[Y]$, and see if your hypothesis was correct. (Recall for any real number $x, \sin ^{2}(x)+\cos ^{2}(x)=1$).
(d) Let W be any discrete random variable with probability mass function $p_{W}(w)$. Then, $\mathbb{E}\left[\sin ^{2}(W)+\right.$ $\left.\cos ^{2}(W)\right]=1$. Is this statement always true? If so, prove it. If not, give a counterexample by giving a probability mass function for a discrete random variable W for which the statement is false.
6. If electricity power failures occur according to a Poisson distribution with an average of 3 failures every twenty weeks, calculate the probability that there will be more than one failure during a particular week.
7. An average page in a book contains one typo. What is the probability that there are exactly 8 typos in a given 10-page chapter, using the Poisson model?
8. A company makes electric motors. The probability an electric motor is defective is 0.01 , independent of other motors made. What is the probability that a sample of 300 electric motors will contain exactly 5 defective motors? Do it first exactly, then approximate it with a Poisson distribution. How good is the approximation?

