
CSE 312: Foundations of Computing II
Quiz Section #9: Maximum Likelihood Estimation, Chernoff Bound (solutions)

Review: Main Theorems and Concepts

Weak Law of Large Numbers (WLLN): Let X1, . . . , Xn be iid random variables with common mean µ and variance
σ2. Let Xn = 1

n
∑n

i=1 Xi be the sample mean for a sample of size n. Then, for any ε > 0, limn→∞ P(|X̄n − µ| > ε) = 0.
We say that X̄n converges in probability to µ.

Chernoff Bound: Let X1, ..., Xn be independent random variables with Xi ∼ Ber(pi), and let X =
∑n

i=1 Xn have
E[X] = µ. Then, for any δ > 0, we have the following

• P(X ≥ (1 + δ)µ) ≤ exp
(
−δ2µ
2+δ

)
• P(X ≤ (1 − δ) µ) ≤ exp

(
−

δ2µ
2

)
• P(|X − µ| > δµ) ≤ 2 exp

(
−δ2µ
2+δ

)
Sample/Realization: A sample (or realization) x of a random variable X is the value that is actually observed.

Likelihood: Let x1, . . . xn be iid samples from probability mass function pX (x | θ) (if X discrete) or density fX (x | θ)
(if X continuous), where θ is a parameter (or a vector of parameters). We define the likelihood function to be the
probability of seeing the data.

If X is discrete:

L (x1, . . . , xn | θ) =

n∏
i=1

pX (xi | θ)

If X is continuous:

L (x1, . . . , xn | θ) =

n∏
i=1

fX (xi | θ)

Maximum Likelihood Estimator (MLE): We denote the MLE of θ as θ̂MLE or simply θ̂, the parameter (or vector of
parameters) that maximizes the likelihood function (probability of seeing the data).

θ̂MLE = argmax
θ

L (x1, . . . , xn | θ) = argmax
θ

ln L (x1, . . . , xn | θ)

Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since the logarithm
is a strictly increasing function, the value of θ that maximizes the likelihood will be exactly the same as the value that
maximizes the log-likelihood.

If X is discrete:

ln L (x1, . . . , xn | θ) =

n∑
i=1

ln pX (xi | θ)

If X is continuous:

ln L (x1, . . . , xn | θ) =

n∑
i=1

ln fX (xi | θ)
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Steps to find the maximum likelihood estimator, θ̂:

1. Find the likelihood and log-likelihood of the data.

2. Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, θ̂.

3. Take the second derivative and show that θ̂ indeed is a maximizer, that d2L
dθ2 < 0 at θ̂. Also ensure that it is the

global maximizer: check points of non-differentiability and boundary values.

Exercises

1. Suppose x1, . . . , xn are iid samples from a distribution with density

fX (x | θ) =


θxθ−1

3θ
, 0 ≤ x ≤ 3

0, otherwise

Find the MLE for θ.

L (x1, . . . , xn | θ) =

n∏
i=1

θxθ−1
i

3θ

ln L (x1, . . . , xn | θ) =

n∑
i=1

(ln θ + (θ − 1) ln xi − θ ln 3)

∂

∂θ
ln L (x1, . . . , xn | θ) =

n∑
i=1

(
1
θ

+ ln xi − ln 3
)

= 0

n
θ̂

+

n∑
i=1

ln xi − n ln 3 = 0

n
θ̂

= n ln 3 −
n∑

i=1

ln xi

θ̂MLE =
n

n ln 3 −
∑n

i=1 ln xi

Check that it is a maximum by showing the second derivative is negative for all values of θ.

∂2

∂θ2 ln L (x1, . . . , xn | θ) =

n∑
i=1

(
−

1
θ2

)
= −

n
θ2 < 0

so ln L (x1, . . . , xn | θ) is concave downward everywhere.

2. Suppose x1, . . . , x2n are iid samples from the Laplace density (double exponential density)

fX (x | θ) =
1
2

e−|x−θ|

2



Find the MLE for θ. For this problem, you need not verify that the MLE is indeed a maximizer. You may find
the sign function useful:

sgn (x) =

{
+1, x ≥ 0
−1, x < 0

L (x1, . . . , x2n | θ) =

2n∏
i=1

1
2

e−|xi−θ|

ln L (x1, . . . , x2n | θ) =

2n∑
i=1

[− ln 2 − |xi − θ|]

∂

∂θ
ln L (x1, . . . , x2n | θ) =

2n∑
i=1

sgn (xi − θ) = 0

θ̂ = any value in [x
′

n, x
′

n+1]

where x
′

i is the ith order statistic: the ith smallest observation.

If you wanted to argue that this is a global maximizer, note that the log likelihood is the sum of concave functions,
so every critical point is a global maximizer.

3. Suppose X ∼ Bin(6, 0.4). We will bound P(X ≥ 4) using the concentration inequalities we’ve learned, and
compare this to the true result.

(a) Give an upper bound for this probability using Markov’s inequality.

P(X ≥ 4) ≤ E[X]
4 = 2.4

4 = 0.6

(b) Give an upper bound for this probability using Chebyshev’s inequality.

P(X ≥ 4) = P(X − 2.4 ≥ 1.6) ≤ P(|X − 2.4| ≥ 1.6) ≤ Var(X)
1.62 = 1.44

1.62 = 0.5625

(c) Give an upper bound for this probability using the appropriate Chernoff bound.

P(X ≥ 4) = P
(
X ≥ (1 + 2

3 )2.4
)
≤ e−δ

2µ/(2+δ) = e−0.4 ≈ 0.6703

(d) Give the exact probability.

P(X ≥ 4) = P(X = 4) + P(X = 5) + P(X = 6) =
(

6
4

)
(0.4)4(0.6)2 +

(
6
5

)
(0.4)5(0.6) +

(
6
6

)
0.46 = 0.1792

4. (MAP Estimation) Let x1, ..., xn be iid realizations from a distribution with common pmf pX(x; θ) where θ is an
unknown but fixed parameter. Let’s call the event {X1 = x1, ..., Xn = xn} = D for data. You may wonder why
in MLE, we seek to maximize the likelihood L(D | θ), rather than P(θ | D). This is because it doesn’t make
sense to compute P(θ), since θ is fixed. However, in Maximum a Posteriori (MAP) estimation, we assume the
parameter is a random variable (denoted Θ), and attempt to maximize πΘ(θ | D), where πΘ is the pmf or pdf of

Θ, depending on whether Θ is continuous or discrete. Using Bayes Theorem, we get πΘ(θ | D) =
L(D | θ)πΘ(θ)

L(D)
.

To maximize the LHS with respect to θ, we may ignore the denominator on the RHS since it is constant with
respect to θ. Hence MAP seeks to maximize πΘ(θ | D) ∝ L(D | θ)πΘ(θ). We call πΘ(θ) the prior distribution
on the parameter Θ, and πΘ(θ | D) the posterior distribution on Θ. MLE maximizes the likelihood, and MAP
maximizes the product of the likelihood and the prior. If the prior is uniform, we will see that MAP is the same
as MLE (since πΘ(θ) won’t depend on θ).
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(a) Suppose we have the samples x1 = 0, x2 = 0, x3 = 1, x4 = 1, x5 = 0 from the Ber(θ) distribution, where θ
is unknown. Assume θ is unrestricted; that is, θ ∈ (0, 1). What is θ̂MLE?

L (x1, . . . , x5 | θ) = θ2(1 − θ)3

ln L (x1, . . . , x5 | θ) = 2 ln(θ) + 3 ln(1 − θ)

∂

∂θ
ln L (x1, . . . , x5 | θ) =

2
θ
−

3
1 − θ

= 0

2 − 2θ = 3θ

θ̂MLE =
2
5

(b) Suppose we impose that θ ∈ {0.2, 0.5, 0.7}. What is θ̂MLE?

We can compute L(D | θ) for each value of θ, and take the largest.

L(D | 0.2) = (1 − 0.2)3(0.2)2 = 0.02048

L(D | 0.5) = (1 − 0.5)3(0.5)2 = 0.03125

L(D | 0.7) = (1 − 0.7)3(0.7)2 = 0.01323

So θ̂MLE = 0.5 .

(c) Assume Θ is restricted as in part (b) (now a random variable for MAP). Assume a (discrete) prior of
πΘ(0.2) = 0.1, πΘ(0.5) = 0.01, πΘ(0.7) = 0.89. What is θ̂MAP?

We compute the objective to maximize for MAP:

πΘ(0.2 | D) ∝ L(D | 0.2)πΘ(0.2) = 0.02048 · 0.1 = 0.002048

πΘ(0.5 | D) ∝ L(D | 0.5)πΘ(0.5) = 0.03125 · 0.01 = 0.0003125

πΘ(0.7 | D) ∝ L(D | 0.7)πΘ(0.7) = 0.01323 · 0.89 = 0.0117747

Hence θ̂MAP = 0.7 .

(d) Show that we can make the MAP estimator whatever we want it to be. That is, for each of the three
candidate parameters above, find a prior distribution on Θ such that the MAP estimate is that parameter.

Just assign a prior of 1 to the desired parameter. If you don’t want something degenerate, assign a prior
extremely close to 1, and give uniform probability to the other parameters.

(e) Typically, for the Bernoulli distribution, if we use MAP, we want to be able to get any value θ ∈ (0, 1)
(not just ones in a finite set such as {0.2, 0.5, 0.7}). So we assign θ the Beta distribution with parameters
α, β > 0 and density πΘ(θ) = cθα−1(1 − θ)β−1 for θ ∈ (0, 1) and 0 otherwise as a prior, where c is a
normalizing constant which has a complicated form. The mode of a W ∼ Beta(α, β) random variable is
given as α−1

α+β−2 (the mode is the value with the highest density = arg maxw∈(0,1) fW (w)). Suppose x1, ..., xn

are iid samples from the Bernoulli distribution with unknown parameter, where
∑n

i=1 xi = k. Recall that
the MLE is k/n. Show that the posterior πΘ(θ | D) has a Beta(k + α, n − k + β) density, and find the MAP
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estimator for Θ. (Hint: use the mode given). Notice that Beta(1, 1) ≡ Uni f (0, 1). If we had this prior, how
would the MLE and MAP estimates compare?

We want to maximize πΘ(θ | D) ∝ L(D | θ)πΘ(θ) ∝
(
θk(1 − θ)n−k

) (
θα−1(1 − θ)β−1

)
= θ(k+α)−1(1−θ)(n−k+β)−1.

Hence the posterior ∼ Beta(k+α, n−k+β). We are given the mode of any beta distribution, so our estimate

is θ̂MAP =
k + α − 1

n + α + β − 2
. If α = β = 1, then this is exactly the MLE, and Beta(1, 1) ≡ Uni f (0, 1), so

having a uniform prior causes the MLE to equal the MAP estimate.

(f) Since the posterior is also a Beta distribution, we call the Beta distribution the conjugate prior to the
Bernoulli distribution. Intepret what the parameters α, β mean as to the prior.

α − 1 is the number of heads you pretend to see beforehand, and β − 1 is the number of tails you pre-

tend to see beforehand. Why is this? Because our MLE was
k
n

(heads/tails), and the MAP estimate is
k + α − 1

n + (α + β − 2)
=

k + (α − 1)
n + (α − 1) + (β − 1)

. Hence we add α + β − 2 “fake” trials, α − 1 which are heads (nu-

merator), and the other β−1 which are tails. This should look familiar as our estimates for P(word | spam)
and P(word | ham) with a Beta(2, 2) prior when we did smoothing for Naive Bayes.

(g) Which do you think is “better”, MLE or MAP?

There is no right answer. There are two main schools in statistics: Bayesians and Frequentists. Frequentists
prefer MLE since they don’t believe you should be putting a prior belief on anything, and you should
only make judgment based on what you’ve seen. They believe the parameter being estimated is a fixed
quantity. On the other hand, Bayesians prefer MAP, since they can incorporate their prior knowledge into
the estimation. Hence the parameter being estimated is a random variable, and we seek the mode - the
value with the highest probability or density. An example would be estimating the probability of heads of
a coin - is it reasonable to assume it is more likely fair than not? If so, what distribution should we put on
the parameter space?

Anyway, in the long run, the prior “washes out”, and the only thing that matters is the likelihood; the ob-
served data. For small sample sizes like this, the prior significantly influences the MAP estimate. However,
as the number of samples goes to infinity, the MAP and MLE are equal.
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