
CSE 312: Foundations of Computing II
Quiz Section #6: Discrete RV’s, Conditional Expectation, Tail Bounds

(solutions)

Review: Main Theorems and Concepts

Variance: Let X be a random variable and µ = E[X]. The variance of X is defined to be Var (X) = E[(X − µ)2]. Notice
that since this is an expectation of a nonnegative random variable ((X − µ)2), variance is always nonnegative. With
some algebra, we can simplify this to Var (X) = E

[
X2

]
− E2[X].

Standard Deviation: Let X be a random variable. We define the standard deviation of X to be the square root of the
variance, and denote it σ =

√
Var(X).

Property of Variance: Let a, b ∈ R and let X be a random variable. Then, Var (aX + b) = a2Var(X).

Independence: Random variables X and Y are independent, written X⊥Y , iff

∀x∀y P (X = x ∩ Y = y) = P (X = x)P(Y = y)

In this case, we have E [XY] = E [X]E[Y] (the converse is not necessarily true).

i.i.d. (independent and identically distributed): Random variables X1, . . . , Xn are i.i.d. (or iid) iff they are indepen-
dent and have the same probability mass function.

Variance of Independent Variables: If X⊥Y , Var (X + Y) = Var (X) + Var(Y). This depends on independence,
whereas linearity of expectation always holds. Note that this combined with the above shows that ∀a, b, c ∈ R and if
X⊥Y , Var (aX + bY + c) = a2Var (X) + b2Var(Y).

Conditional Expectation: Let X be a random variable, and E be an event. Then, E[X | E] =
∑

x x · P(X = x | E).

Law of Total Expectation: Let X be a random variable, and E1, ..., En a partition of the sample space. Then, E[X] =∑n
i=1 E[X | Ei] · P(Ei). In particular, if Y is a random variable, then E[X] =

∑
y E[X | Y = y] · P(Y = y), since the events

where {Y = y} form a partition.

Markov’s Inequality: Let X be a non-negative random variable, and α > 0. Then, P (X ≥ α) ≤ E[X]
α

.

Chebyshev’s Inequality: Suppose Y is a random variable with E [Y] = µ and Var (Y) = σ2. Then, for any α > 0,
P (|Y − µ| ≥ α) ≤ σ2

α2 .

Zoo of Discrete Random Variables

Uniform: X ∼ Uni f (a, b), for integers a ≤ b, iff X has the following probability mass function:

pX (k) =
1

b − a + 1
, k = a, a + 1, . . . , b

E [X] = a+b
2 and Var (X) =

(b−a)(b−a+2)
12 . This represents each integer from [a, b] to be equally likely. For example, a

single roll of a fair die is Uni f (1, 6).
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Bernoulli (or indicator): X ∼ Ber(p) iff X has the following probability mass function:

pX (k) =

{
p, k = 1

1 − p, k = 0

E [X] = p and Var (X) = p(1 − p). An example of a Bernoulli r.v. is one flip of a coin with P (head) = p. By a clever
trick, we can write

pX (k) = pk (1 − p)1−k , k = 0, 1

Binomial: X ∼ Bin(n, p) iff X is the sum of n iid Ber(p) random variables. X has probability mass function

pX (k) =

(
n
k

)
pk (1 − p)n−k , k = 0, 1, . . . , n

E [X] = np and Var (X) = np(1 − p). An example of a Binomial r.v. is the number of heads in n independent flips of a
coin with P (head) = p. Note that Bin(1, p) ≡ Ber(p). As n → ∞ and p → 0,with np = λ, then Bin (n, p) → Poi(λ).
If X1, . . . , Xn are independent Binomial r.v.’s, where Xi ∼ Bin(Ni, p), then X = X1 + . . . + Xn ∼ Bin(N1 + . . . + Nn, p).

Geometric: X ∼ Geo(p) iff X has the following probability mass function:

pX (k) = (1 − p)k−1 p, k = 1, 2, . . .

E [X] = 1
p and Var (X) =

1−p
p2 . An example of a Geometric r.v. is the number of independent coin flips up to and

including the first head, where P (head) = p.

Negative Binomial: X ∼ NegBin(r, p) iff X is the sum of r iid Geo(p) random variables. X has probability mass
function

pX (k) =

(
k − 1
r − 1

)
pr (1 − p)k−r , k = r, r + 1, . . .

E [X] = r
p and Var (X) =

r(1−p)
p2 . An example of a Negative Binomial r.v. is the number of independent coin flips

up to and including the rth head, where P (head) = p. If X1, . . . , Xn are independent Negative Binomial r.v.’s, where
Xi ∼ NegBin(ri, p), then X = X1 + . . . + Xn ∼ NegBin(r1 + . . . + rn, p).

Poisson: X ∼ Poi(λ) iff X has the following probability mass function:

pX (k) = e−λ
λk

k!
, k = 0, 1, . . .

E [X] = λ and Var (X) = λ. An example of a Poisson r.v. is the number of people born during a particular minute,
where λ is the average birth rate per minute. If X1, . . . , Xn are independent Poisson r.v.’s, where Xi ∼ Poi(λi), then
X = X1 + . . . + Xn ∼ Poi(λ1 + . . . + λn).

Hypergeometric: X ∼ HypGeo(N,K, n) iff X has the following probability mass function:

pX (k) =

(
K
k

)(
N−K
n−k

)(
N
n

) , k = max{0, n + K − N}, . . . ,min {K, n}

E [X] = n K
N . This represents the number of successes drawn, when n items are drawn from a bag with N items (K

of which are successes, and N − K failures) without replacement. If we did this with replacement, then this scenario
would be represented as Bin

(
n, K

N

)
.
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Exercises

1. Suppose we roll two fair 5-sided dice independently. Let X be the value of the first die, Y be the value of the
second die, Z = X + Y be their sum, U = min {X,Y} and V = max {X,Y}.

(a) Find pU(u).

pU(u) =



9
25 , u = 1
7

25 , u = 2
5

25 , u = 3
3

25 , u = 4
1

25 , u = 5

(b) Find E[U].

E [U] = 1 ·
9
25

+ 2 ·
7

25
+ 3 ·

5
25

+ 4 ·
3
25

+ 5 ·
1

25
=

55
25

= 2.2

(c) Find E[Z].

We know X,Y ∼ Uni f (1, 5), so E [X] = E [Y] = 1+5
2 = 3.

E [Z] = E [X + Y] = E [X] + E [Y] = 3 + 3 = 6

(d) Find E[UV].

E [UV] = E [XY] = E [X]E [Y] = 32 = 9

Since UV = XY , and then X,Y are independent.

(e) Find Var(U + V).

Since X,Y ∼ Uni f (1, 5), Var (X) = Var (Y) =
(5−1)(5−1+2)

12 = 2.
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Var (U + V) = Var (X + Y) = Var (X) + Var (Y) = 2 + 2 = 4

Since U + V = X + Y , and then X,Y are independent.

2. Suppose X has the following probability mass function:

pX (x) =


c, x = 0

2c, x = π
2

c, x = π
0, otherwise

(a) Suppose Y1 = sin (X). Find E[Y2
1 ].

Probabilities must sum to 1, so c = 1/4.

E
[
Y2

1

]
= E

[
sin2 (X)

]
=

1
4

sin2 (0) +
1
2

sin2
(
π

2

)
+

1
4

sin2 (π) =
1
2

(b) Suppose Y2 = cos (X). Find E[Y2
2 ].

E
[
Y2

2

]
= E

[
cos2 (X)

]
=

1
4

cos2 (0) +
1
2

cos2
(
π

2

)
+

1
4

cos2 (π) =
1
2

(c) Suppose Y = Y2
1 + Y2

2 = sin2(X) + cos2(X). Before any calculation, what do you think E[Y] should be?
Find E[Y], and see if your hypothesis was correct. (Recall for any real number x, sin2(x) + cos2(x) = 1).

I expect the answer to be 1, since for any real number x, sin2(x) + cos2(x) = 1, but I’m not sure since these
are random variables and not real numbers.

E [Y] = E
[
Y2

1 + Y2
2

]
= E

[
Y2

1

]
+ E

[
Y2

2

]
=

1
2

+
1
2

= 1

(d) Let W be any discrete random variable with probability mass function pW (w). Then,
E[sin2(W) + cos2(W)] = 1. Is this statement always true? If so, prove it. If not, give a counterex-
ample by giving a probability mass function for a discrete random variable W for which the statement is
false.

This is true. Recall for a discrete random variable, E
[
g(X)

]
=

∑
x g(x)pX(x).
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E[sin2(W) + cos2(W)] =
∑

w

(sin2(w) + cos2(w))pW (w) =
∑

w

pW (w) = 1

3. Consider the following scenarios:

(a) Let X1, ..., Xn be iid (independent and identically distributed) random variables with mean µ and variance

σ2. Let Xn =
1
n

∑n
i=1 Xi be the sample mean. Compute E[Xn] and Var(Xn).

E[Xn] = E

1
n

n∑
i=1

Xi

 =
1
n

n∑
i=1

E[Xi] =
1
n

n∑
i=1

µ =
1
n
· nµ = µ

Var(Xn) = Var

1
n

n∑
i=1

Xi

 =
1
n2

n∑
i=1

Var(Xi) =
1
n2

n∑
i=1

σ2 =
1
n2 · nσ

2 =
σ2

n

(b) Suppose n students take a CSE 312 exam with scores ranging in {0, 1, ..., 100}, mean 50. Give an upper
bound on the probability that a student gets over 80.

Using Markov’s inequality, P(X ≥ 80) ≤
E[X]
80

=
50
80

=
5
8

(c) Continuing from the previous part, suppose you also know the variance of scores is 25. Give an upper
bound on the probability that a student gets over 80.

Using Chebyshev’s inequality,

P(X ≥ 80) ≤ P(X ≥ 80 or X ≤ 20) = P(|X − 50| ≥ 30) ≤
Var(X)

302 =
25
302 =

1
36

(d) How large should n be such that the sample average is farther away from 50 by 10 with probability at most
0.01?

Let X1, ..., Xn be the student’s scores. Then, E[Xn] = 50 and Var(Xn) =
25
n

by part (a). By Chebyshev’s
inequality, we have

P(|Xn − 50| ≥ 10) ≤
Var(Xn)

102 =
25

100n
=

1
4n

We want this ≤ 0.01, so we solve
1

4n
≤ 0.01 to get that n ≥ 25.
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4. Suppose I run a lemonade stand outside, which costs me $100 a day to operate. I sell a drink of lemonade for
$20. Each person who walks by my stand either buys no drink, or exactly 1 drink. If it rains, only n1 people
walk by my stand, and each buy a drink independently with probability p1. If it doesn’t rain, n2 people walk
by my stand, and each buy a drink independently with probability p2. It rains every day with probability p3,
independently of each other day. Let X be my profit over the next week. What is E[X]?

Let R be the event it rains, and Xi be how many drinks I sell on day i for i ∈ [7]. Then,

X =

7∑
i=1

(20Xi − 100)

We can see that

(Xi | R) ∼ Bin(n1, p1), E[Xi | R] = n1 p1

(Xi | RC) ∼ Bin(n2, p2), E[Xi | RC] = n2 p2

By the law of total expectation,

E[Xi] = E[Xi | R]P(R) + E[Xi | RC]P(RC) = n1 p1 p3 + n2 p2(1 − p3)

So

E[X] = E

 7∑
i=1

(20Xi − 100)

 = 20
7∑

i=1

E[Xi] − 700 = 140[n1 p1 p3 + n2 p2(1 − p3)] − 700

5. Let N be a random variable which can take on only nonnegative integer values, which has mean γ. Let X1, ..., XN

be a random number of iid random variables with common mean µ, such that each Xi is independent of N.
Define X =

∑N
i=1 Xi. What is E[X]?

First, notice that

E[X | N = n] = E

 N∑
i=1

Xi | N = n

 = E

 n∑
i=1

Xi

 = nµ

By the law of total expectation,

E[X] =
∑

n

E[X | N = n]P(N = n) =
∑

n

nµ · P(N = n) = µ
∑

n

n · P(N = n) = µ · E[N] = γµ

6. Suppose I am fishing in a pond with B blue fish, R red fish, and G green fish, where B + R + G = N. For each of
the following scenarios, identify the most appropriate distribution (with parameter(s)):
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(a) how many of the next 10 fish I catch are blue, if I catch and release

Bin
(
10,

B
N

)

(b) how many fish I had to catch until my first green fish, if I catch and release

Geo
(G

N

)

(c) how many red fish I catch in the next five minutes, if I catch on average r red fish per minute

Poi(5r)

(d) whether or not my next fish is blue

Ber
( B

N

)

(e) how many of the next 10 fish I catch are blue, if I do not release the fish back to the pond after each catch

HypGeo(N, B, 10)

(f) how many fish I have to catch until I catch three red fish, if I catch and release

NegBin
(
3,

R
N

)

7. Suppose Y1, . . . ,Yn are iid with E [Yi] = µ and Var (Yi) = σ2, and let Y = 1
n
∑n

i=1 iYi. What is E[Y] and Var(Y)?
Recall that

∑n
i=1 i =

n(n+1)
2 and

∑n
i=1 i2 =

n(n+1)(2n+1)
6 .

E [Y] = E

1
n

n∑
i=1

iYi

 =
1
n

n∑
i=1

iE[Yi] =
µ

n

n∑
i=1

i =
µ

n
n (n + 1)

2
=
µ(n + 1)

2

Var (Y) = Var

1
n

n∑
i=1

iYi

 =
1
n2

n∑
i=1

i2Var (Yi) =
σ2

n2

n(n + 1)(2n + 1)
6

= σ2 (n + 1)(2n + 1)
6n
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8. Is the following statement true or false? If E [XY] = E [X]E[Y], then X⊥Y . If it is true, prove it. If not, provide
a counterexample.

As mentioned in the review section, this is false.

Let X ∼ Uni f (−1, 1) and Y = X2. Notice that XY = X3 = X. Then E [XY] = 0 = E [X]E[Y]. But X and Y are
not independent because P (Y = 1|X = 1) = 1 , 2

3 = P(Y = 1).
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