CSE 312: Foundations of Computing II Quiz Section \#6: Discrete RV's, Conditional Expectation, Tail Bounds (solutions)

Review: Main Theorems and Concepts

Variance: Let X be a random variable and $\mu=\mathbb{E}[X]$. The variance of X is defined to be $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mu)^{2}\right]$. Notice that since this is an expectation of a nonnegative random variable $\left((X-\mu)^{2}\right)$, variance is always nonnegative. With some algebra, we can simplify this to $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}^{2}[X]$.

Standard Deviation: Let X be a random variable. We define the standard deviation of X to be the square root of the variance, and denote it $\sigma=\sqrt{\operatorname{Var}(X)}$.

Property of Variance: Let $a, b \in \mathbb{R}$ and let X be a random variable. Then, $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.
Independence: Random variables X and Y are independent, written $X \perp Y$, iff

$$
\forall x \forall y \mathbb{P}(X=x \cap Y=y)=\mathbb{P}(X=x) \mathbb{P}(Y=y)
$$

In this case, we have $\mathbb{E}[\mathrm{XY}]=\mathbb{E}[X] \mathbb{E}[Y]$ (the converse is not necessarily true).
i.i.d. (independent and identically distributed): Random variables X_{1}, \ldots, X_{n} are i.i.d. (or iid) iff they are independent and have the same probability mass function.

Variance of Independent Variables: If $X \perp Y$, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$. This depends on independence, whereas linearity of expectation always holds. Note that this combined with the above shows that $\forall a, b, c \in \mathbb{R}$ and if $X \perp Y, \operatorname{Var}(a X+b Y+c)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)$.

Conditional Expectation: Let X be a random variable, and E be an event. Then, $\mathbb{E}[X \mid E]=\sum_{x} x \cdot \mathbb{P}(X=x \mid E)$.
Law of Total Expectation: Let X be a random variable, and E_{1}, \ldots, E_{n} a partition of the sample space. Then, $\mathbb{E}[X]=$ $\sum_{i=1}^{n} \mathbb{E}\left[X \mid E_{i}\right] \cdot \mathbb{P}\left(E_{i}\right)$. In particular, if Y is a random variable, then $\mathbb{E}[X]=\sum_{y} \mathbb{E}[X \mid Y=y] \cdot \mathbb{P}(Y=y)$, since the events where $\{Y=y\}$ form a partition.

Markov's Inequality: Let X be a non-negative random variable, and $\alpha>0$. Then, $\mathbb{P}(X \geq \alpha) \leq \frac{\mathbb{E}[X]}{\alpha}$.
Chebyshev's Inequality: Suppose Y is a random variable with $\mathbb{E}[Y]=\mu$ and $\operatorname{Var}(Y)=\sigma^{2}$. Then, for any $\alpha>0$, $P(|Y-\mu| \geq \alpha) \leq \frac{\sigma^{2}}{\alpha^{2}}$.

Zoo of Discrete Random Variables

Uniform: $X \sim \operatorname{Unif}(a, b)$, for integers $a \leq b$, iff X has the following probability mass function:

$$
p_{X}(k)=\frac{1}{b-a+1}, \quad k=a, a+1, \ldots, b
$$

$\mathbb{E}[X]=\frac{a+b}{2}$ and $\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}$. This represents each integer from $[a, b]$ to be equally likely. For example, a single roll of a fair die is $\operatorname{Unif}(1,6)$.

Bernoulli (or indicator): $X \sim \operatorname{Ber}(p)$ iff X has the following probability mass function:

$$
p_{X}(k)=\left\{\begin{array}{cc}
p, & k=1 \\
1-p, & k=0
\end{array}\right.
$$

$\mathbb{E}[X]=p$ and $\operatorname{Var}(X)=p(1-p)$. An example of a Bernoulli r.v. is one flip of a coin with $P($ head $)=p$. By a clever trick, we can write

$$
p_{X}(k)=p^{k}(1-p)^{1-k}, \quad k=0,1
$$

Binomial: $X \sim \operatorname{Bin}(n, p)$ iff X is the sum of n iid $\operatorname{Ber}(p)$ random variables. X has probability mass function

$$
p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

$\mathbb{E}[X]=n p$ and $\operatorname{Var}(X)=n p(1-p)$. An example of a Binomial r.v. is the number of heads in n independent flips of a coin with $P($ head $)=p$. Note that $\operatorname{Bin}(1, p) \equiv \operatorname{Ber}(p)$. As $n \rightarrow \infty$ and $p \rightarrow 0$, with $n p=\lambda$, then $\operatorname{Bin}(n, p) \rightarrow \operatorname{Poi}(\lambda)$. If X_{1}, \ldots, X_{n} are independent Binomial r.v.'s, where $X_{i} \sim \operatorname{Bin}\left(N_{i}, p\right)$, then $X=X_{1}+\ldots+X_{n} \sim \operatorname{Bin}\left(N_{1}+\ldots+N_{n}, p\right)$.

Geometric: $X \sim \operatorname{Geo}(p)$ iff X has the following probability mass function:

$$
p_{X}(k)=(1-p)^{k-1} p, \quad k=1,2, \ldots
$$

$\mathbb{E}[X]=\frac{1}{p}$ and $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$. An example of a Geometric r.v. is the number of independent coin flips up to and including the first head, where $P($ head $)=p$.

Negative Binomial: $X \sim \operatorname{Neg} \operatorname{Bin}(r, p)$ iff X is the sum of r iid $\operatorname{Geo}(p)$ random variables. X has probability mass function

$$
p_{X}(k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}, \quad k=r, r+1, \ldots
$$

$\mathbb{E}[X]=\frac{r}{p}$ and $\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$. An example of a Negative Binomial r.v. is the number of independent coin flips up to and including the $r^{\text {th }}$ head, where $P($ head $)=p$. If X_{1}, \ldots, X_{n} are independent Negative Binomial r.v.'s, where $X_{i} \sim \operatorname{Neg} \operatorname{Bin}\left(r_{i}, p\right)$, then $X=X_{1}+\ldots+X_{n} \sim \operatorname{Neg} \operatorname{Bin}\left(r_{1}+\ldots+r_{n}, p\right)$.

Poisson: $X \sim \operatorname{Poi}(\lambda)$ iff X has the following probability mass function:

$$
p_{X}(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k=0,1, \ldots
$$

$\mathbb{E}[X]=\lambda$ and $\operatorname{Var}(X)=\lambda$. An example of a Poisson r.v. is the number of people born during a particular minute, where λ is the average birth rate per minute. If X_{1}, \ldots, X_{n} are independent Poisson r.v.'s, where $X_{i} \sim \operatorname{Poi}\left(\lambda_{i}\right)$, then $X=X_{1}+\ldots+X_{n} \sim \operatorname{Poi}\left(\lambda_{1}+\ldots+\lambda_{n}\right)$.

Hypergeometric: $X \sim \operatorname{HypGeo}(N, K, n)$ iff X has the following probability mass function:

$$
p_{X}(k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}, k=\max \{0, n+K-N\}, \ldots, \min \{K, n\}
$$

$\mathbb{E}[X]=n \frac{K}{N}$. This represents the number of successes drawn, when n items are drawn from a bag with N items (K of which are successes, and $N-K$ failures) without replacement. If we did this with replacement, then this scenario would be represented as $\operatorname{Bin}\left(n, \frac{K}{N}\right)$.

Exercises

1. Suppose we roll two fair 5-sided dice independently. Let X be the value of the first die, Y be the value of the second die, $Z=X+Y$ be their sum, $U=\min \{X, Y\}$ and $V=\max \{X, Y\}$.
(a) Find $p_{U}(u)$.

$$
p_{U}(u)= \begin{cases}\frac{9}{25}, & u=1 \\ \frac{7}{25}, & u=2 \\ \frac{5}{25}, & u=3 \\ \frac{3}{25}, & u=4 \\ \frac{1}{25}, & u=5\end{cases}
$$

(b) Find $\mathbb{E}[U]$.

$$
\mathbb{E}[U]=1 \cdot \frac{9}{25}+2 \cdot \frac{7}{25}+3 \cdot \frac{5}{25}+4 \cdot \frac{3}{25}+5 \cdot \frac{1}{25}=\frac{55}{25}=2.2
$$

(c) Find $\mathbb{E}[Z]$.

We know $X, Y \sim \operatorname{Unif}(1,5)$, so $\mathbb{E}[X]=\mathbb{E}[Y]=\frac{1+5}{2}=3$.

$$
\mathbb{E}[Z]=\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]=3+3=6
$$

(d) Find $\mathbb{E}[U V]$.

$$
\mathbb{E}[\mathrm{UV}]=\mathbb{E}[\mathrm{XY}]=\mathbb{E}[X] \mathbb{E}[Y]=3^{2}=9
$$

Since $U V=X Y$, and then X, Y are independent.
(e) Find $\operatorname{Var}(U+V)$.

Since $X, Y \sim \operatorname{Unif}(1,5), \operatorname{Var}(X)=\operatorname{Var}(Y)=\frac{(5-1)(5-1+2)}{12}=2$.

$$
\operatorname{Var}(U+V)=\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)=2+2=4
$$

Since $U+V=X+Y$, and then X, Y are independent.
2. Suppose X has the following probability mass function:

$$
p_{X}(x)=\left\{\begin{aligned}
c, & & x=0 \\
2 c, & x & =\frac{\pi}{2} \\
c, & x & =\pi \\
0, & & \text { otherwise }
\end{aligned}\right.
$$

(a) Suppose $Y_{1}=\sin (X)$. Find $\mathbb{E}\left[Y_{1}^{2}\right]$.

Probabilities must sum to 1 , so $c=1 / 4$.

$$
\mathbb{E}\left[Y_{1}^{2}\right]=\mathbb{E}\left[\sin ^{2}(X)\right]=\frac{1}{4} \sin ^{2}(0)+\frac{1}{2} \sin ^{2}\left(\frac{\pi}{2}\right)+\frac{1}{4} \sin ^{2}(\pi)=\frac{1}{2}
$$

(b) Suppose $Y_{2}=\cos (X)$. Find $\mathbb{E}\left[Y_{2}^{2}\right]$.

$$
\mathbb{E}\left[Y_{2}^{2}\right]=\mathbb{E}\left[\cos ^{2}(X)\right]=\frac{1}{4} \cos ^{2}(0)+\frac{1}{2} \cos ^{2}\left(\frac{\pi}{2}\right)+\frac{1}{4} \cos ^{2}(\pi)=\frac{1}{2}
$$

(c) Suppose $Y=Y_{1}^{2}+Y_{2}^{2}=\sin ^{2}(X)+\cos ^{2}(X)$. Before any calculation, what do you think $\mathbb{E}[Y]$ should be? Find $\mathbb{E}[Y]$, and see if your hypothesis was correct. (Recall for any real number $x, \sin ^{2}(x)+\cos ^{2}(x)=1$).

I expect the answer to be 1 , since for any real number $x, \sin ^{2}(x)+\cos ^{2}(x)=1$, but I' m not sure since these are random variables and not real numbers.

$$
\mathbb{E}[Y]=\mathbb{E}\left[Y_{1}^{2}+Y_{2}^{2}\right]=\mathbb{E}\left[Y_{1}^{2}\right]+\mathbb{E}\left[Y_{2}^{2}\right]=\frac{1}{2}+\frac{1}{2}=1
$$

(d) Let W be any discrete random variable with probability mass function $p_{W}(w)$. Then, $\mathbb{E}\left[\sin ^{2}(W)+\cos ^{2}(W)\right]=1$. Is this statement always true? If so, prove it. If not, give a counterexample by giving a probability mass function for a discrete random variable W for which the statement is false.

This is true. Recall for a discrete random variable, $\mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x)$.

$$
\mathbb{E}\left[\sin ^{2}(W)+\cos ^{2}(W)\right]=\sum_{w}\left(\sin ^{2}(w)+\cos ^{2}(w)\right) p_{W}(w)=\sum_{w} p_{W}(w)=1
$$

3. Consider the following scenarios:
(a) Let X_{1}, \ldots, X_{n} be iid (independent and identically distributed) random variables with mean μ and variance σ^{2}. Let $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ be the sample mean. Compute $\mathbb{E}\left[\bar{X}_{n}\right]$ and $\operatorname{Var}\left(\bar{X}_{n}\right)$.

$$
\begin{gathered}
\mathbb{E}\left[\bar{X}_{n}\right]=\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \mu=\frac{1}{n} \cdot n \mu=\mu \\
\operatorname{Var}\left(\bar{X}_{n}\right)=\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \sigma^{2}=\frac{1}{n^{2}} \cdot n \sigma^{2}=\frac{\sigma^{2}}{n}
\end{gathered}
$$

(b) Suppose n students take a CSE 312 exam with scores ranging in $\{0,1, \ldots, 100\}$, mean 50 . Give an upper bound on the probability that a student gets over 80 .

Using Markov's inequality, $\mathbb{P}(X \geq 80) \leq \frac{\mathbb{E}[X]}{80}=\frac{50}{80}=\frac{5}{8}$
(c) Continuing from the previous part, suppose you also know the variance of scores is 25 . Give an upper bound on the probability that a student gets over 80 .

Using Chebyshev's inequality,

$$
\mathbb{P}(X \geq 80) \leq \mathbb{P}(X \geq 80 \text { or } X \leq 20)=\mathbb{P}(|X-50| \geq 30) \leq \frac{\operatorname{Var}(X)}{30^{2}}=\frac{25}{30^{2}}=\frac{1}{36}
$$

(d) How large should n be such that the sample average is farther away from 50 by 10 with probability at most 0.01 ?

Let X_{1}, \ldots, X_{n} be the student's scores. Then, $\mathbb{E}\left[\bar{X}_{n}\right]=50$ and $\operatorname{Var}\left(\bar{X}_{n}\right)=\frac{25}{n}$ by part (a). By Chebyshev's inequality, we have

$$
\mathbb{P}\left(\left|\bar{X}_{n}-50\right| \geq 10\right) \leq \frac{\operatorname{Var}\left(\bar{X}_{n}\right)}{10^{2}}=\frac{25}{100 n}=\frac{1}{4 n}
$$

We want this ≤ 0.01, so we solve $\frac{1}{4 n} \leq 0.01$ to get that $n \geq 25$.
4. Suppose I run a lemonade stand outside, which costs me $\$ 100$ a day to operate. I sell a drink of lemonade for $\$ 20$. Each person who walks by my stand either buys no drink, or exactly 1 drink. If it rains, only n_{1} people walk by my stand, and each buy a drink independently with probability p_{1}. If it doesn't rain, n_{2} people walk by my stand, and each buy a drink independently with probability p_{2}. It rains every day with probability p_{3}, independently of each other day. Let X be my profit over the next week. What is $\mathbb{E}[X]$?

Let R be the event it rains, and X_{i} be how many drinks I sell on day i for $i \in$ [7]. Then,

$$
X=\sum_{i=1}^{7}\left(20 X_{i}-100\right)
$$

We can see that

$$
\begin{aligned}
\left(X_{i} \mid R\right) \sim \operatorname{Bin}\left(n_{1}, p_{1}\right), & \mathbb{E}\left[X_{i} \mid R\right]=n_{1} p_{1} \\
\left(X_{i} \mid R^{C}\right) \sim \operatorname{Bin}\left(n_{2}, p_{2}\right), & \mathbb{E}\left[X_{i} \mid R^{C}\right]=n_{2} p_{2}
\end{aligned}
$$

By the law of total expectation,

$$
\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[X_{i} \mid R\right] \mathbb{P}(R)+\mathbb{E}\left[X_{i} \mid R^{C}\right] \mathbb{P}\left(R^{C}\right)=n_{1} p_{1} p_{3}+n_{2} p_{2}\left(1-p_{3}\right)
$$

So

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{7}\left(20 X_{i}-100\right)\right]=20 \sum_{i=1}^{7} \mathbb{E}\left[X_{i}\right]-700=140\left[n_{1} p_{1} p_{3}+n_{2} p_{2}\left(1-p_{3}\right)\right]-700
$$

5. Let N be a random variable which can take on only nonnegative integer values, which has mean γ. Let X_{1}, \ldots, X_{N} be a random number of iid random variables with common mean μ, such that each X_{i} is independent of N. Define $X=\sum_{i=1}^{N} X_{i}$. What is $\mathbb{E}[X]$?

First, notice that

$$
\mathbb{E}[X \mid N=n]=\mathbb{E}\left[\sum_{i=1}^{N} X_{i} \mid N=n\right]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=n \mu
$$

By the law of total expectation,

$$
\mathbb{E}[X]=\sum_{n} \mathbb{E}[X \mid N=n] \mathbb{P}(N=n)=\sum_{n} n \mu \cdot \mathbb{P}(N=n)=\mu \sum_{n} n \cdot \mathbb{P}(N=n)=\mu \cdot \mathbb{E}[N]=\gamma \mu
$$

6. Suppose I am fishing in a pond with B blue fish, R red fish, and G green fish, where $B+R+G=N$. For each of the following scenarios, identify the most appropriate distribution (with parameter(s)):
(a) how many of the next 10 fish I catch are blue, if I catch and release

$$
\operatorname{Bin}\left(10, \frac{B}{N}\right)
$$

(b) how many fish I had to catch until my first green fish, if I catch and release

$$
\operatorname{Geo}\left(\frac{G}{N}\right)
$$

(c) how many red fish I catch in the next five minutes, if I catch on average r red fish per minute

$$
\operatorname{Poi}(5 r)
$$

(d) whether or not my next fish is blue

$$
\operatorname{Ber}\left(\frac{B}{N}\right)
$$

(e) how many of the next 10 fish I catch are blue, if I do not release the fish back to the pond after each catch

$$
\operatorname{HypGeo}(N, B, 10)
$$

(f) how many fish I have to catch until I catch three red fish, if I catch and release

$$
\operatorname{NegBin}\left(3, \frac{R}{N}\right)
$$

7. Suppose Y_{1}, \ldots, Y_{n} are iid with $\mathbb{E}\left[Y_{i}\right]=\mu$ and $\operatorname{Var}\left(Y_{i}\right)=\sigma^{2}$, and let $Y=\frac{1}{n} \sum_{i=1}^{n} i Y_{i}$. What is $\mathbb{E}[Y]$ and $\operatorname{Var}(Y)$? Recall that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ and $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.

$$
\begin{gathered}
\mathbb{E}[Y]=\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} i Y_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} i \mathbb{E}\left[Y_{i}\right]=\frac{\mu}{n} \sum_{i=1}^{n} i=\frac{\mu}{n} \frac{n(n+1)}{2}=\frac{\mu(n+1)}{2} \\
\operatorname{Var}(Y)=\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} i Y_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} i^{2} \operatorname{Var}\left(Y_{i}\right)=\frac{\sigma^{2}}{n^{2}} \frac{n(n+1)(2 n+1)}{6}=\sigma^{2} \frac{(n+1)(2 n+1)}{6 n}
\end{gathered}
$$

8. Is the following statement true or false? If $\mathbb{E}[\mathrm{XY}]=\mathbb{E}[X] \mathbb{E}[Y]$, then $X \perp Y$. If it is true, prove it. If not, provide a counterexample.

As mentioned in the review section, this is false.
Let $X \sim \operatorname{Unif}(-1,1)$ and $Y=X^{2}$. Notice that $X Y=X^{3}=X$. Then $\mathbb{E}[\mathrm{XY}]=0=\mathbb{E}[X] \mathbb{E}[Y]$. But X and Y are not independent because $P(Y=1 \mid X=1)=1 \neq \frac{2}{3}=P(Y=1)$.

