
CSE 312: Foundations of Computing II
Quiz Section #5: Midterm review (solutions)

Review of Concepts

Expectation (expected value, mean, or average): The expectation of a discrete random variable is defined

to be E [X] =
∑

x xpX(x) =
∑

x xP(X = x). The expectation of a function of a discrete random variable

g(X) is E
[
g (X)

]
=

∑
x g (x) pX(x).

Linearity of Expectation: Let X and Y be random variables, and a, b, c∈ R. Then, E [aX + bY + c] =

aE [X] + bE [Y] + c.

To take advantage of Linearity of Expectation, it is often helpful to write a variable X as a sum of indicator
variables, which are of the following form:

Xi =

{
1, if some condition is met for object i
0, otherwise

Then, E[X] = E[
∑

i Xi] =
∑

i E[Xi] =
∑

i P(Xi = 1).

Variance: Let X be a random variable and µ = E[X]. The variance of X is defined to be Var (X) =

E[(X − µ)2]. Notice that since this is an expectation of a nonnegative random variable ((X − µ)2), variance
is always nonnegative. With some algebra, we can simplify this to Var (X) = E

[
X2

]
− E2[X].

Property of Variance: Let a, b ∈ R and X a random variable. Then, Var (aX + b) = a2Var(X).

Exercises on Expectation and Variance

1. Let the random variable X be the sum of two independent rolls of a fair 3-sided die. (If you are having
trouble imagining what that looks like, you can use a 6-sided die and change the numbers on 3 of its
faces.)

(a) What is the probability mass function of X?

pX(2) = 1/9

pX(3) = 2/9

pX(4) = 3/9

pX(5) = 2/9

pX(6) = 1/9
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(b) Find E[X] directly by applying the definition of expectation to the result from part (a).

E[X] = 2 ·
1
9

+ 3 ·
2
9

+ 4 ·
3
9

+ 5 ·
2
9

+ 6 ·
1
9

= 4

(c) Find E[X] again using linearity of expectation.

Let Y be the result of the first roll and Z be the result of the second.

E[X] = E[Y + Z] = E[Y] + E[Z] = 2E[Y] = 2 ·
1
3

(1 + 2 + 3) = 4

(d) Now compute Var(X) two ways: (1) using the definition Var(X) = E[(X − µ)2], and (2) using
the formula Var(X) = E[X2] − (E[X])2.

Method 1: From part (c), the mean (or expected value) of µ is just 4. Now, we apply the formula
for the expectation of a function of a random variable.

Var(X) = E((X − 4)2) =
∑

x

(X − 4)2 pX(x)

= (2 − 4)2 · pX(2) + (3 − 4)2 · pX(3) + (4 − 4)2 · pX(4) + (5 − 4)2 · pX(5) + (6 − 4)2 · pX(6)

= (−2)2 ·
1
9

+ (−1)2 ·
2
9

+ 02 ·
3
9

+ 12 ·
2
9

+ 22 ·
1
9

=
4
3

As a reminder, pX(x) means the probability that the random variable X takes on the value x.

Method 2: First we compute E[X2], using the formula for expectation of a function of a random
variable.

E[X2] = 22 · pX(2) + 32 · pX(3) + 42 · pX(4) + 52 · pX(5) + 62 + ·pX(6)

= 4 ·
1
9

+ 9 ·
2
9

+ 16 ·
3
9

+ 25 ·
2
9

+ 36 ·
1
9

=
52
3

Now apply the formula for variance:

Var(X) = E[X2] − (E[X])2 =
52
3
− 42 =

4
3
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2. You are playing a game at a primitive casino. To play, you must pay $20 initially. Then, you roll one
fair 6-sided dice, and you are paid 5 times the value you roll. Let M be the amount of money you earn
as profit from playing the game once. Compute E[M] and Var(M). Use the fact that if X is the value
of a single roll of a fair 6-sided dice, E[X] = 7/2 and Var(X) = 105/36.

M = 5X − 20, so:

E[M] = E[5X − 20] = 5E[X] − 20 = 5 ·
7
2
− 20 = −

5
2

Var(M) = Var(5X − 20) = 52 · Var(X) = 25 ·
105
36

=
875
12

3. You have 10 pairs of socks (so 20 socks in total), with each pair being a different color. You put them
in the washing machine, but the washing machine eats 4 of the socks chosen at random. Every subset
of 4 socks is equally probable to be the subset that gets eaten. Let X be the number of complete pairs
of socks that you have left.

(a) What is the probability mass function of X?

pX(8) =

(
10
2

)
(
20
4

) =
3

19 · 17

pX(7) =

(
10
1

) (
9
2

)
· 22(

20
4

) =
96

19 · 17

pX(6) =

(
10
4

)
· 24(

20
4

) =
224

19 · 17

pX(i) = 0 for all other values of i

(b) Find E[X] directly by applying the definition of expectation to the result from part (a). Give your
answer exactly as a simplified fraction.

E[X] =
8 · 3 + 7 · 96 + 6 · 224

19 · 17
=

120
19
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(c) Find E[X] again using linearity of expectation. Give your answer exactly as a simplified fraction.

For 1 ≤ i ≤ 10, let

Xi =

{
1, if both socks from pair i survive
0, otherwise

E[X] = E

 10∑
i=1

Xi

 =

10∑
i=1

E[Xi]

=

10∑
i=1

(1 · P(Xi = 1) + 0 · P(Xi = 0))

=

10∑
i=1

P(both socks from pair i survive)

=

10∑
i=1

(
18
4

)
(
20
4

) =
120
19

4. Find the expected number of bins that remain empty when m balls are distributed into n bins randomly
and independently. For each ball, each bin has an equal probability of being chosen. (Notice that two
bins being empty are not independent events: if one bin is empty, that decreases the probability that
the second bin will also be empty. This is particularly obvious when n = 2 and m > 0.)

For 1 ≤ i ≤ n, let

Xi =

{
1, if bin i is empty
0, otherwise

E[X] = E

 n∑
i=1

Xi

 =

n∑
i=1

E[Xi]

=

n∑
i=1

(1 · P(Xi = 1) + 0 · P(Xi = 0))

=

n∑
i=1

P(bin i is empty)

=

n∑
i=1

(n − 1)m

nm =
(n − 1)m

nm−1
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Midterm Review Exercises (more online!)

5. Let A and B be events in the same sample space that each have nonzero probability. For the following
statements, state whether it is always true, always false, or it depends on information not given.

(a) If A and B are mutually exclusive, then they are independent.

False

(b) If A and B are independent, then they are mutually exclusive.

False

(c) If P(A) = P(B) = 0.75, then A and B are mutually exclusive.

False

(d) If P(A) = P(B) = 0.75, then A and B are independent.

Depends whether P(A ∩ B) = 9/16

6. How many integers in {1, 2, . . . , 360} are divisible by one or more of the numbers 2, 3, and 5?

Inclusion-exclusion:

360
2

+
360
3

+
360

5
−

360
2 × 3

−
360

2 × 5
−

360
3 × 5

+
360

2 × 3 × 5
= 180 + 120 + 72 − 60 − 36 − 24 + 12 = 264

7. A Schnapsen deck has 4 suits with 5 cards in each suit. Suppose a deck of Schnapsen cards is shuffled
well and then dealt into 5 piles of 4 cards each. Let Ei refer to the event that pile i has exactly one
spade. Compute the probability P(E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5).

Imagine the cards are laid out in order. You can think of there being 20 “slots”, with 4 groups of 5
slots each. We count the number of ways to place the spades into slots in order. For the total number
of ways to assign the spades to slots: you have 20 slots for the 1st spade, 19 choices for 2nd spade,
and so on. This is the bottom of the fraction (sample space).

To count the top, we want to make sure that each spade goes to a different pile. There are still 20
possible slots for the 1st spade, but there are only 16 slots for the 2nd spade since it must go into a
different pile from the 1st. For the 3rd spade, there are 12 possible slots because it must go into a
different pile from the first two, and so on. So we have

20 · 16 · 12 · 8 · 4
20 · 19 · 18 · 17 · 16

≈ 0.066
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8. You are working on a difficult passage from a new piece you are learning on the piano. You wish to
play it correctly 4 times before stopping for the day. If your probability of playing it correctly on each
attempt is 2/3, and the attempts are independent (unfortunately!), what is the probability that you have
to play it at least 8 times?

This is equivalent to asking the probability that, in the first 7 attempts, you play it correctly 3 or fewer
times. Let X be the number of times you play it correctly in the first 7 attempts. Then X ∼ Bin(7, 2/3).

P(X ≤ 3) =

(
7
0

) (
2
3

)0 (
1
3

)7

+

(
7
1

) (
2
3

)1 (
1
3

)6

+

(
7
2

) (
2
3

)2 (
1
3

)5

+

(
7
3

) (
2
3

)3 (
1
3

)4

=
379
37 ≈ 0.173
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