CSE 312: Foundations of Computing II Quiz Section #5: Midterm review

Review of Concepts

Expectation (expected	d value, mean, or average): The expectation of a discrete random variable is defined
to be $\mathbb{E}[X] = \underline{\hspace{1cm}}$. The expectation of a function of a discrete random variable
$g(X)$ is $\mathbb{E}\left[g\left(X\right)\right] = $	
Linearity of Expecta	tion : Let <i>X</i> and <i>Y</i> be random variables, and $a, b, c \in \mathbb{R}$. Then, $\mathbb{E}[aX + bY + c] = \underline{\hspace{1cm}}$
To take advantage of L variables, which are o	inearity of Expectation, it is often helpful to write a variable X as a sum of indicator f the following form:
	$X_i = \left\{ \begin{array}{c} \underline{\hspace{1cm}}, & \text{if some condition is met for object } i \\ \underline{\hspace{1cm}}, & \text{otherwise} \end{array} \right.$
Then, $\mathbb{E}[X] = \mathbb{E}[\sum_i X_i]$	$=\sum_{i}\mathbb{E}[X_{i}]=\underline{\qquad}.$
	a random variable and $\mu = \mathbb{E}[X]$. The variance of X is defined to be $\text{Var}(X) = \underline{\hspace{1cm}}$. Notice that since this is an expectation of a $\underline{\hspace{1cm}}$ random triance is always $\underline{\hspace{1cm}}$. With some algebra, we can simplify this to X].
Property of Variance	: Let $a, b \in \mathbb{R}$ and X a random variable. Then, $Var(aX + b) = \underline{\hspace{1cm}}$.
Exercises on Expec	tation and Variance
	variable <i>X</i> be the sum of two independent rolls of a fair 3-sided die. (If you are having ag what that looks like, you can use a 6-sided die and change the numbers on 3 of its
(a) What is the	e probability mass function of X?
(b) Find $\mathbb{E}[X]$	directly by applying the definition of expectation to the result from part (a).
(c) Find $\mathbb{E}[X]$	again using linearity of expectation.
	oute $Var(X)$ two ways: (1) using the definition $Var(X) = \mathbb{E}[(X - \mu)^2]$, and (2) using a $Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$.

- 2. You are playing a game at a primitive casino. To play, you must pay \$20 initially. Then, you roll one fair 6-sided dice, and you are paid 5 times the value you roll. Let M be the amount of money you earn as profit from playing the game once. Compute $\mathbb{E}[M]$ and Var(M). Use the fact that if X is the value of a single roll of a fair 6-sided dice, $\mathbb{E}[X] = 7/2$ and Var(X) = 105/36.
- 3. You have 10 pairs of socks (so 20 socks in total), with each pair being a different color. You put them in the washing machine, but the washing machine eats 4 of the socks chosen at random. Every subset of 4 socks is equally probable to be the subset that gets eaten. Let *X* be the number of complete pairs of socks that you have left.
 - (a) What is the probability mass function of X?
 - (b) Find $\mathbb{E}[X]$ directly by applying the definition of expectation to the result from part (a). Give your answer exactly as a simplified fraction.
 - (c) Find $\mathbb{E}[X]$ again using linearity of expectation. Give your answer exactly as a simplified fraction.
- 4. Find the expected number of bins that remain empty when m balls are distributed into n bins randomly and independently. For each ball, each bin has an equal probability of being chosen. (Notice that two bins being empty are not independent events: if one bin is empty, that decreases the probability that the second bin will also be empty. This is particularly obvious when n = 2 and m > 0.)

Midterm Review Exercises (more online!)

- 5. Let *A* and *B* be events in the same sample space that each have nonzero probability. For the following statements, state whether it is always true, always false, or it depends on information not given.
 - (a) If A and B are mutually exclusive, then they are independent.
 - (b) If A and B are independent, then they are mutually exclusive.
 - (c) If $\mathbb{P}(A) = \mathbb{P}(B) = 0.75$, then A and B are mutually exclusive.
 - (d) If $\mathbb{P}(A) = \mathbb{P}(B) = 0.75$, then A and B are independent.
- 6. How many integers in $\{1, 2, \dots, 360\}$ are divisible by one or more of the numbers 2, 3, and 5?
- 7. A Schnapsen deck has 4 suits with 5 cards in each suit. Suppose a deck of Schnapsen cards is shuffled well and then dealt into 5 piles of 4 cards each. Let E_i refer to the event that pile i has exactly one spade. Compute the probability $\mathbb{P}(E_1 \cap E_2 \cap E_3 \cap E_4 \cap E_5)$.
- 8. You are working on a difficult passage from a new piece you are learning on the piano. You wish to play it correctly 4 times before stopping for the day. If your probability of playing it correctly on each attempt is 2/3, and the attempts are independent (unfortunately!), what is the probability that you have to play it at least 8 times?