
CSE 312: Foundations of Computing II
Quiz Section #4: Conditional Probability, Random Variables, Naive Bayes

(solutions)

Review: Main Theorems and Concepts

Conditional Probability: P(A|B) =
P(A ∩ B)
P(B)

Independence: Events E and F are independent iff P(E ∩ F) = P(E)P(F), or equivalently P(F) = P(F|E), or equiva-
lently P(E) = P(E|F)

Conditional Independence: Let E, F,G be events, and P(G) > 0. E and F are conditionally independent given G iff
P(E ∩ F | G) = P(E | G)P(F | G), or equivalently P(F|E,G) = P(F|G), or equivalently P(E|F,G) = P(E|G)

Bayes Theorem: P(A|B) =
P(B|A)P(A)
P(B)

Partition: Nonempty events E1, . . . , En partition the sample space Ω iff

• E1, . . . , En are exhaustive: E1 ∪ E2 ∪ · · · ∪ En =
⋃n

i=1 Ei = Ω, and

• E1, . . . , En are pairwise mutually exclusive: ∀i , j, Ei ∩ E j = ∅

– Note that for any event A (with A , ∅, A , Ω): A and AC partition Ω

Law of Total Probability (LTP): Suppose A1, . . . , An partition Ω and let B be any event. Then

P(B) =
∑n

i=1 P(B ∩ Ai) =
∑n

i=1 P(B | Ai)P(Ai)

Bayes Theorem with LTP: Suppose A1, . . . , An partition Ω and let A, B be any events with P(A),P(B) > 0.

Then P(A1|B) =
P(B | A1)P(A1)∑n
i=1 P(B | Ai)P(Ai)

. In particular,

P(A|B) =
P(B | A)P(A)

P(B | A)P(A) + P(B | AC)P(AC)

Chain Rule: Suppose A1, . . . , An are events. Then

P(A1 ∩ . . . ∩ An) = P(A1)P(A2 | A1)P(A3 | A1 ∩ A2) . . . P(An | A1 ∩ . . . ∩ An−1)

Random Variable (rv): A numeric function X : Ω→ R of the outcome.

Range/Support: The support/range of a random variable X, denoted ΩX , is the set of all possible values that X can
take on.

Discrete Random Variable (drv): A random variable taking on a countable (either finite or countably infinite) number
of possible values.
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Probability Mass Function (pmf) for a discrete random variable X: a function pX : ΩX → [0, 1] with pX (x) =

P(X = x) that maps possible values of a discrete random variable to the probability of that value happening, such that∑
x pX(x) = 1.

Exercises

1. Suppose there are three possible teachers for CSE 312: Martin Tompa, Anna Karlin, and Anup Rao. Suppose
the ratio of grades A : B : C : D : F for Martin’s class is 1 : 2 : 3 : 4 : 5, for Anna’s class is 3 : 4 : 5 : 1 : 2, and
for Anup’s class is 5 : 4 : 3 : 2 : 1. Suppose you are assigned a grade randomly according to the given ratios
when you take a class from one of these professors, irrespective of your performance. Furthermore, suppose
Martin teaches your class with probability 1

2 and Anna and Anup have an equal chance of teaching if Martin
isn’t. What is the probability you had Martin, given that you received an A? Compare this to the unconditional
probability that you had Martin.

Let T,K,R be the events you take 312 from Tompa, Karlin, and Ruzzo, respectively. Let the letter grades be
events themselves.

P(T |A) =
P(A|T )P(T )

P(A|T )P(T ) + P(A|K)P(K) + P(A|R)P(R)
=

1
15 ·

1
2

1
15 ·

1
2 + 3

15 ·
1
4 + 5

15 ·
1
4

=

1
2

1
2 + 3

4 + 5
4

=
2

2 + 3 + 5
=

2
10

=
1
5

2. Suppose we have a coin with probability p of heads. Suppose we flip this coin n times independently. Let X be
the number of heads that we observe. What is P(X = k), for k = 0, . . . n? Verify that

∑n
k=0 P(X = k) = 1, as it

should.

P(X = k) =

(
n
k

)
pk(1 − p)n−k

For a given sequence with exactly k heads, the probability of that sequence is pk(1 − p)n−k. However, there are(
n
k

)
such sequences, so the probability of exactly k heads is

(
n
k

)
pk(1 − p)n−k.

n∑
k=0

P(X = k) =

n∑
k=0

(
n
k

)
pk(1 − p)n−k = (p + (1 − p))n = 1

The middle equality uses the Binomial Theorem.

3. Suppose we have a coin with probability p of heads. Suppose we flip this coin until we flip a head for the first
time. Let X be the number of times we flip the coin up to and including the first head. What is P(X = k), for
k ∈ N? Verify that

∑∞
k=1 P(X = k) = 1, as it should.

P(X = k) = (1 − p)k−1 p

If the kth flip is our first head, the first k − 1 must be tails. Then the kth flip must be a head.
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∞∑
k=1

P(X = k) =

∞∑
k=1

(1 − p)k−1 p = p
∞∑
j=0

(1 − p) j =
p

1 − (1 − p)
= 1

4. A frog starts on a 1-dimensional number line at 0. At each second, independently, the frog takes a unit step right
with probability p1, to the left with probability p2, and doesn’t move with probability p3, where p1 + p2 + p3 = 1.
After 2 seconds, let X be the location of the frog. Find pX(k), the probability mass function for X. Find pY (k),
the probability mass function for Y = |X|.

Let L be a left step, R be a right step, and N be no step.

P (X = −2) = P (LL) = p2
2

P (X = 2) = P (RR) = p2
1

P (X = 1) = P (RN ∪ NR) = 2p1 p3

P (X = −1) = P (LN ∪ NL) = 2p2 p3

P (X = 0) = P (NN ∪ LR ∪ RL) = p2
3 + 2p1 p2

pX (k) =


p2

2, k = −2
2p2 p3, k = −1
p2

3 + 2p1 p2, k = 0
2p1 p3, k = 1
p2

1, k = 2

pY (k) =


p2

3 + 2p1 p2, k = 0
2p3(p1 + p2), k = 1
p2

1 + p2
2, k = 2

5. Corrupted by their power, the judges running the popular game show America’s Next Top Mathematician have
been taking bribes from many of the contestants. During each of two episodes, a given contestant is either
allowed to stay on the show or is kicked off. If the contestant has been bribing the judges, she will be allowed
to stay with probability 1. If the contestant has not been bribing the judges, she will be allowed to stay with
probability 1/3, independent of what happens in earlier episodes. Suppose that 1/4 of the contestants have been
bribing the judges. The same contestants bribe the judges in both rounds.

(a) If you pick a random contestant, what is the probability that she is allowed to stay during the first episode?

Let S i be the event that she stayed during the i-th episode. By the Law of Total Probability,

P(S 1) =
1
4
· 1 +

3
4
·

1
3

=
1
2
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(b) If you pick a random contestant, what is the probability that she is allowed to stay during both episodes?

By the Law of Total Probability,

P(S 1 ∩ S 2) =
1
4
· 1 · 1 +

3
4
·

1
3
·

1
3

=
1
3

(c) If you pick a random contestant who was allowed to stay during the first episode, what is the probability
that she gets kicked off during the second episode?

By the definition of conditional probability and the Law of Total Probability,

P(S 2 | S 1) =
P(S 1 ∩ S 2)
P(S 1)

=

1
4 · 1 · 0 + 3

4 ·
1
3 ·

2
3

1
2

=
1/6
1/2

=
1
3

(d) If you pick a random contestant who was allowed to stay during the first episode, what is the probability
that she was bribing the judges?

Let B be the event that she bribed the judges. By Bayes’ Theorem,

P(B | S 1) =
P(S 1 | B)P(B)
P(S 1)

=
1 · 1

4
1
2

=
1
2

6. Questions about the Naive Bayes Classifier:

(a) Naive Bayes assumes conditional independence of words in an email, given that we know the label (ham
or spam) of the email. Why is that assumption necessary to make Naive Bayes work?

Without assuming conditional independence, the chain rule gives rise to factors such as P(x1 | x2, . . . , xn, S )
that have so many conditions that it’s impossible to estimate its probability. Think about what that term
is trying to calculate: what is the probability that the word x1 occurs in a spam email, given that x2, . . . xn

also occur? Unless there are several spam emails in the training data with all the words x2, . . . xn in them,
the training procedure can provide no useful estimate of this probability.

(b) Is the conditional independence assumption actually true in the real world? That is, are the occurrences of
words in an email independent of each other, if we know the label of the email? Explain.

No. Certain words tend to occur together, such as “top” and “secret”, and “viagra” and “man”.

(c) Do you expect the Naive Bayes Classifier to correctly classify all emails in a test set? Explain why or why
not.

No, there will be both false positive results (classifying ham email as spam) and false negative results (clas-
sifying spam email as ham). Certain combinations of words may coincidentally occur more (or less) often
in the spam training data than the ham training data, and these may cause a test email to be misclassified.

(d) If you were a spammer and you knew we used Naive Bayes to filter spam, how would you change your
emails to try to get past the filter?

You could add a lot of words that tend to occur mostly in ham, causing the classifier to misclassify your
email as ham. You could purposely misspell spam keywords so that they don’t look like words found in
the training data.
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