
CSE 312: Foundations of Computing II
Quiz Section #2: Combinations, Counting Tricks (solutions)

Review: Main Theorems and Concepts

Combinations (number of ways to choose k objects out of n distinct objects, when the order of the
k objects does not matter):

n!
k!(n − k)!

=

(
n
k

)
= C(n, k)

Multinomial coefficients: Suppose there are n objects, but only k are distinct, with k ≤ n. (For
example, “godoggy” has n = 7 objects (characters) but only k = 4 are distinct: (g, o, d, y)). Let ni

be the number of times object i appears, for i ∈ {1, 2, . . . , k}. (For example, (3, 2, 1, 1), continuing
the “godoggy” example.) The number of distinct ways to arrange the n objects is:

n!
n1!n2! · · · nk!

=

(
n

n1, n2, . . . , nk

)

Binomial Theorem: ∀x, y ∈ R,∀n ∈ N: (x + y)n =
∑n

k=0

(
n
k

)
xkyn−k

Principle of Inclusion-Exclusion (PIE): 2 events: |A ∪ B| = |A| + |B| − |A ∩ B|
3 events: |A ∪ B ∪C| = |A| + |B| + |C| − |A ∩ B| − |A ∩C| − |B ∩C| + |A ∩ B ∩C|
In general: +singles - doubles + triples - quads + . . .

Pigeonhole Principle: If there are n pigeons with k holes and n > k, then at least one hole contains
at least 2 (or to be precise, d

n
k
e) pigeons.

Complementary Counting (Complementing): If asked to find the number of ways to do X, you
can: find the total number of ways and then subtract the number of ways to not do X.

Exercises

1. There are 12 points on a plane. Five of them are collinear and, other than these, no three are
collinear.
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(a) How many lines, each containing at least 2 of the 12 points, can be formed?(
12
2

)
−

(
5
2

)
+ 1 = 57

(b) How many triangles, each containing at least 3 of the 12 points, can be formed?(
12
3

)
−

(
5
3

)
= 210

2. There are 6 women and 7 men in a ballroom dancing class. If 4 men and 4 women are chosen
and paired off, how many pairings are possible?

First choose 4 men and 4 women,
(

7
4

)
and

(
6
4

)
respectively. Then, fix the order of men

M1,M2,M3,M4.

You can see that there are 4! ways to assign the women to each man, so we have a total of(
7
4

)(
6
4

)
4! ways.

3. You have 12 red beads, 16 green beads, and 20 blue beads. How many distinguishable
ways are there to place the beads on a string, assuming that beads of the same color are
indistinguishable? (The string has a loose end and a tied end, so that reversing the order
of the beads gives a different arrangement, unless the pattern of colors happens to form a
palindrome.) Try solving the problem two different ways, once using permutations and once
using using combinations.

Using permutations:
48!

12! · 16! · 20!
Using combinations: (

48
12

) (
36
16

)
=

48!
12! · 36!

·
36!

16! · 20!

4. How many bridge hands have a suit distribution of 5, 5, 2, 1? (That is, you are playing with a
standard 52-card deck and you have 5 cards of one suit, 5 cards of another suit, 2 of another
suit, and 1 of the last suit.)(

13
5

) (
13
5

) (
13
2

) (
13
1

)
·

4!
2!

: the factor of 4! in the numerator takes care of the number of ways

to assign suits to the number of cards, and the factor of 2! in the denominator takes care of
the fact that two suits have the same number (5) of cards and so are overcounted.

5. Give a combinatorial proof that
∑n

k=0

(
n
k

)
= 2n. Do not use the binomial theorem. (Hint: you

can count the number of subsets of [n] = {1, 2, . . . , n}). Note: A combinatorial proof is one
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in which you explain how to count something in two different ways – then those formulae
must be equivalent if they both indeed count the same thing.

Fix a subset of [n] of size k. There are
(

n
k

)
such subsets because we choose any k elements out

of the n, with order not mattering since these are sets. Subsets can be of size k = 0, 1, . . . , n.
So the total number of subsets of [n] is

∑n
k=0

(
n
k

)
. On the other hand, each element of [n] is

either in a subset or not. So there are 2 possibilities for the first element (in or out), 2 for the
second, etc. So there are 2n subsets of [n]. Therefore,

∑n
k=0

(
n
k

)
= 2n. Note that this agrees

with the binomial theorem using x = y = 1.

6. Find the number of ways to rearrange the word “INGREDIENT”, such that no two identical
letters are adjacent to each other. For example, “INGREEDINT” is invalid because the two
E’s are adjacent. Repeat the question for the letters “AAAAABBB”.

We use inclusion-exclusion. Let Ω be the set of all anagrams (permutations) of “INGREDI-
ENT”, and AI be the set of all anagrams with two consecutive I’s. Define AE and AN similarly.
AI ∪ AE ∪ AN clearly are the set of anagrams we don’t want. So we use complementing to
count the size of Ω \ (AI ∪ AE ∪ AN). By inclusion exclusion, |AI ∪ AE ∪ AN | =singles-
doubles+triples, and by complementing, |Ω \ (AI ∪ AE ∪ AN)| = |Ω| − |AI ∪ AE ∪ AN |.

First, |Ω| =
10!

2!2!2!
because there are 2 of each of I,E,N’s (multinomial coefficient). Clearly,

the size of AI is the same as AE and AN . So |AI | =
9!

2!2!
because we treat the two adjacent I’s

as one entity. We also need |AI ∩AE | =
8!
2!

because we treat the two adjacent I’s as one entity
and the two adjacent E’s as one entity (same for all doubles). Finally, |AI ∩ AE ∩ AN | = 7!
since we treat each pair of adjacent I’s, E’s, and N’s as one entity.

Putting this together gives
10!

2!2!2!
−

((
3
1

)
·

9!
2!2!

−

(
3
2

)
·

8!
2!

+

(
3
3

)
· 7!

)

For the second question, note that no A’s and no B’s can be adjacent. So let us put the B’s
down first: B B B

By the pigeonhole principle, two A’s must go in the same slot, but then they would be
adjacent, so there are no ways .

7. At a card party, someone brings out a deck of bridge cards (4 suits with 13 cards in each). N
people each pick 2 cards from the deck and hold onto them. What is the minimum value of
N that guarantees at least 2 people have the same combination of suits?

N = 11 : There are
(
4
2

)
combinations of 2 different suits, plus 4 possibilities of having 2
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cards of the same suit. With N = 11 you can apply the pigeonhole principle.

8. At a dinner party, the n people present are to be seated uniformly spaced around a circular
table. Suppose there is a nametag at each place at the table and suppose that nobody sits
down at the correct place. Show that it is possible to rotate the table so that at least two
people are sitting in the correct place.

For i = 1, ..., n, let ri be the number of rotations clockwise needed for the ith person to be in
their spot. Each ri can be between 1 and n − 1 (not 0 since no one is at their nametag, and
not n since it is equivalent to 0). Since there are n people and only n − 1 possible values for
the rotations, at least two must have the same value by the pigeonhole principle. Rotate the
table clockwise by that much, and at least two people will be in the correct place.

9. (a) Two parents only have 3 bedrooms for their 13 children. If each child is assigned to
a bedroom, one of the bedrooms must have at least c children. What is the maximum
value of c that makes this statement true? Prove it.

c = 5. Prove that c > 4 by contradiction. Suppose not. Then, all bedrooms have ≤ 4
children, so there are ≤ 12 children, a contradiction. Hence at least one bedroom has at
least 5 children.

(b) (Strong Pigeonhole Principle) More generally, what can you say about n children in k
bedrooms? Find a general formula for the maximum value of c that guarantees one of
the bedrooms must have at least c children.

c = dn/ke. Note that the ordinary Pigeonhole Principle is the special case when k =

n − 1.

10. Suppose 250 new majors entered the CSE program this fall. There are 200 new majors in
CSE 311, 40 in CSE 331, and 150 in CSE 351. Furthermore, 20 new majors are in both CSE
311 and CSE 331, 120 new majors are in both CSE 311 and CSE 351, and 10 new majors
are in both CSE 331 and CSE 351. Finally, there are 4 new majors in all three (CSE 311,
CSE 331, and CSE 351). How many CSE students are not in any of those 3 courses? (Note:
These numbers were made up.)

Let A be the set of students in CSE 311, B be the set of students in CSE 331, and C be
the set of students in CSE 351. Start by counting the complement, which is the number of
students who are in at least one of those three classes, which is |A ∪ B∪C|. By the principle
of inclusion-exclusion,

|A ∪ B ∪C| = |A| + |B| + |C| − |A ∩ B| − |A ∩C| − |B ∩C| + |A ∩ B ∩C|

= 200 + 40 + 150 − 20 − 120 − 10 + 4 = 244
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Finally, the number of new majors who are not in one of those three classes is just the
total number of new majors minus those who are in at least one of those classes, which is
250 − 244 = 6 .

11. Suppose Anna, Bob, Carol, Daniel, and Evelyn are sitting down to eat, and Anna and Bob
must sit next to each other. How many arrangements are possible if

(a) They sit in a line

Since Anna and Bob must sit next to each other, treat them as a single entity. There are
4! arrangements. Then, there are 2 ways to arrange Anna and Bob (either Anna sits to
the left of Bob, or to the right). 2 ∗ 4! = 48

Alternatively, use complementary counting. There are 5! total arrangements. Now
subtract the number of ways where Anna and Bob are not adjacent. If Anna is sitting
at an end of the line (2 positions), there are 3 positions for Bob which are not adjacent
to Anna. Then, there are 3! ways to arrange the remaining people, so there are 2 · 3 · 3!
arrangements in this case. However, if Anna is not sitting at an end of the line (3
positions), there are 2 positions for Bob which are not adjacent to Anna. Then there
are 3! ways to arrange the remaining people, so there are 3 · 2 · 3! arrangements in this
case. Putting this together, we have 5! − (2 · 3 · 3! + 3 · 2 · 3!) = 48

(b) They are sitting at a circular table (two arrangements are considered equivalent if one
can be rotated to give another)

Again, we treat Anna and Bob as a single entity. So we’re arranging 4 people around
a circle. If they were in a line, we would have 4! arrangements, but this overcounts
by a factor of 4 since each of the 4 rotations of the circle were counted separately, but
are actually considered the same arrangement. Thus, there are 4!/4 ways to arrange
4 objects arond the circle. Finally, there are 2 ways to arrange Anna and Bob again.
2 · 4!

4 = 12
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