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We discuss several examples of how one can use Bayes’ rule.

There are many obvious identities that probabilities satisfy:

Fact 1 (Bayes’ Rule). If A, B are events, then

p(A|B) = p(B|A) · p(A)

p(B)
.

Fact 2 (Chain Rule). If A1, A2, . . . , An are events, then

p(A1 ∩ A2 ∩ . . . An)

= p(A1) · p(A2|A1) · p(A3|A1 ∩ A2) · . . . · p(An|A1 ∩ A2 ∩ . . . ∩ An−1).

Fact 3 (Law of Total Probability). If A1, A2, . . . , An are disjoint events
that form a partition of the whole sample space, and B is another event, then

p(B) = p(A1 ∩ B) + p(A2 ∩ B) + . . . + p(An ∩ B).

Exampe: Using Bayes’ Rule

Suppose an urn either contains 3 red balls and 3 blue balls with
probability 3/4, or 6 red balls with probability 1/4. You draw 3 balls
at random and come up with 3 red balls. What are the remaining
balls in the urn?

Let M denote the event that the balls are mixed. Let D denote the
event that 3 red balls were drawn. We have

p(D|M) =

(
3
3

)
/
(

6
3

)
= 1/20.

and

p(M|D) =
p(D|M)p(M)

p(D)
.

We can calculate p(D) = p(D|M)p(M) + p(D|Mc)p(Mc) = 1
20 · 3/4 +

1 · 1/4 = 23/80. Then we get

p(M|D) =
p(D|M)p(M)

p(D)
=

(1/20)(3/4)
23/80

= 3/23.

p(M) is often called the prior. p(M|D) is called the posterior.
We start by discussing a simple application of Bayes’ rule.
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Example: Radar

Suppose the airforce designs a new radar system. If an aircraft is
present in the range of the radar system, then the aircraft is detected
with probability 0.99. If the aircraft is not present, then the radar
reports that an aircraft is present with probability 0.1. Suppose the
probability than an aircraft is present is 0.05. What is the probability
that the system gives a false alarm, meaning that an aircraft is not
presented but is detected? What is the probability that an aircraft
is present and detected? What is the probability that an aircraft is
present given that the radar reports an aircraft?

The first thing to do is to model all the events we care about with
events. Let A be the event that an aircraft is present, and R be the
event that the radar detects an aircraft. Then we have p(R|A) =

0.99 and p(R|Ac) = 0.1. Finally, we know that p(A) = 0.05. The
probability of a false alarm is p(Ac ∩ R). We have:

p(Ac ∩ R) = p(Ac) · p(R|Ac) = (1− 0.05) · 0.1 = 0.095.

Similarly, we have

p(A ∩ R) = p(A) · p(R|A) = 0.05 · 0.99 = 0.0495.

The probability that there is an aircraft given that the radar reports
one can be calculated using Bayes’ rule:

p(A|R) = p(R|A)p(A)

p(R)
.

We see that we know all of the quantities on the right hand side
except p(R). However, we have

p(R) = p(R ∩ A) + p(R ∩ Ac)

= 0.095 + 0.0495 = 0.1445.

So, we get

p(A|R) = p(R|A)p(A)

p(R)
=

0.0495
0.1445

= 0.34256,

which is not as high as you might expect. The point is that because
the probability of an aircraft being present is so low, the probability
of a false alarm from the radar better be extremely low for the radar
to be effective.

Example: Gamblers Ruin

Suppose a gambler has 0 < i < N dollars. In each step, with prob-
ability 1/2 the gambler makes a dollar, and with probability 1/2 the
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gambler loses a dollar. If the gambler ever hits 0 dollars she loses. If
she hits N dollars, she wins. What is the probability she wins?

Let Ei denote the event that the probability that the gambler wins
starting with i dollars, and let pi = p(Ei). Then we have p0 = 0, pN =

1, and for 0 < i < N,

pi = p(Ei) = p(Ei+1) ·
1
2
+ p(Ei−1) ·

1
2
=

1
2
(pi−1 + pi+1).

Rearranging, we get
pi+1 = 2pi − pi−1.

So p2 = 2 · p1 − p0 = 2p1, p3 = 2p2 − p1 = 3p1, and in general

pi+1 = 2pi − pi−1 = 2ip1 − (i− 1)p1 = (i + 1)p1.

So we have 1 = pN = Np1. This gives p1 = 1/N, and pi = i/N for all
i.

Suppose the gambler is really addicted to gambling, and suppose
in each step he wins a dollar with probabilty 1/2, and loses a dollar
with probability 1/2. However, this time, the gambler doesn’t stop
when he has N dollars. He continues to gamble forever. What is the
probability that he loses? Is there a chance that he can keep winning
forever?

Let pi denote the probability that the gambler wins. Then we have:

pi =
pi+1 + pi−1

2
,

so as before, we get
pi+1 = 2pi − pi−1.

One possible solution to these equations is that pi = 0 for all i—the
gambler always loses, no matter how money he starts with. Indeed,
this is the only solution. Certainly if p1 = 0, then p2 = 2p1 − p0 = 0,
and in this way pi = 0 for all i. On the other hand, if p1 > 0, then
exactly as before, we have pi = ip1, which implies for large enough
i, pi > 1, which is impossible. This proves that pi = 0 is the only
solution.

What happens if the gambler never quits, but wins each bet with
probability 0.99? Even in this case you can show that he eventually
loses, though this requires some additional work. The proof that I have in mind requires

the concept of variance, which we shall
discuss in a future lecture.


