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We discuss conditional probability. We learn about the famous Bayes’
rule, and start talking about Random Variables.

Conditional Probability

Something very nice happens to probability spaces when you
zoom in to a particular event. For example, consider the two events
A, B in the sample space Ω shown below. As usual, let p denote the
distribution of the outcomes in Ω.
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Figure 1: Two events and their intersec-
tion in a probability space.

Let us think about the event A ∩ B. This event corresponds to a
subset of the sample space Ω, but it is also a subset of A. In a sense,
we could think of A itself as a sample space, and A ∩ B as an event in
that sample space.

This view is particularly useful to modify our view of the proba-
bility space when some partial information has been revealed to us. If
we have a probability space as above, and we know that the event A
has happened, then the probability that B also happens, given that A
has happened is

p(B|A) =
p(A ∩ B)

p(A)
.

In particular, this definition gives:

p(B|A) · p(A) = p(A ∩ B) = p(A|B) · p(B),

which implies that

p(B|A) =
p(A|B) · p(B)

p(A)
.

This last equation is called Bayes’ rule.
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Example: Two Dice

Suppose you roll two dice at the same time. There are 6× 6 = 36
possible outcomes of these rolls, and all are equally likely. What is
the probability that the dice add up to 8?
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Figure 2: The sample space when two
dice are rolled.

There are 11 possible values for the sum of the two dice, from
2− 12. Figure 4 shows the 11 corresponding events where the sum of
the dice is fixed to a value. So, for example, the probability that the
sum of the dice is 2 is only 1/36, but the probability that the sum is 7
is the largest: 6/36 = 1/6. If F denotes the event that the sum of the
dice is 8, we have

p(F) = 5/36.

Now, let us consider a different kind of question. What is the
probability that the sum of the dice is 8, given that the first die gives
a value that is ≤ 4?
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Figure 3: The events corresponding to
the sum of the dice being 8 and the first
die being ≤ 4 are shown.
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If E denotes the event that the first die gives a value ≤ 4 and F
denotes the event that the sum of the dice is 8, then we see that

p(E) = 4/6 = 2/3,

p(F) = 5/36,

and
p(E ∩ F) = 3/36 = 1/12.

So,

p(F|E) = p(E ∩ F)
p(E)

=
1/12
4/6

= 1/8.

You can also calculate p(F|E) directly from the picture: it corre-
sponds to picking 3 out of 4 × 6 outcomes, so the probability is
3/24 = 1/8. From the picture, we see that

p(E|F) = 3
5

,

and we can verify Bayes’ rule:

p(F|E) = 1
8
=

(3/5) · (5/36)
2/3

=
p(E|F) · p(F)

p(E)
.

If H is the event that the sum of the dice is 6, we see that p(H|E) =
4/24 = 1/6. So, even though the probablity of the sum being 6 is the
same as the probability that the sum is 8, once we know that the first
die roll is at most 4, the lower sum values get a boost: the probablity
that the sum is 5 conditioned on E is larger than the probability that
the sum is 8 conditioned on E.

The Conditional Probabilities give a Probability Space

It is easy to check that the probabilities p(x|E) = p(x∩E)
p(E) satisfy all the

axioms that a probability space is supposed to satisfy. It is clear that
p(x|E) ≥ 0. Moreover, we have:

∑
x∈E

p(x|E) = ∑
x∈E

p(x ∩ E)
p(E)

=
p(E)
p(E)

= 1.

So we can think of a new distribution q(x) given by q(x) = p(x|E).
This distribution gives 0 weight to the points in the sample space
outside of E, and is a valid distribution supported on Ω. It can also
be viewed as a distribution supported on E, since it does not assign
any weight to the points outside E.
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Random Variables

It can be quite cumbersome to talk about events in a probability
space, because there are so many of them. One piece of notation that
really helps is the concept of a random variable. A random variable is
just a function X : Ω → S that maps the points in the sample space to
some other set.

Random variables can be thought of as a partition of the entire
sample space into disjoint events, namely those sets where the ran-
dom variables is constant.

For example, in the case that we are throwing two dice, we can
define the random variable X to be the value of the first die, and Y to
be the value of the second die.
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Figure 4: The events corresponding to
the sum of the dice being 8 and the first
die being ≤ 4 are shown.

Then the event E is the same as the event that X ≤ 4, and the event
F is the same as the event that X + Y = 8.

The distribution p on the probability space induces a distribution
p(X) on the values in [6] taken by the random variable X, a distri-
bution p(Y) on the values in [6] taken by the random variable Y and
a joint distribution p(X, Y) on the values in [6] × [6] taken by both
values. Often, if p(X, Y) is the distribution of X and Y, then p(X) is
referred to as the marginal distribution on X.
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