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We discuss the pigeonhole principle and probability spaces.

Pigeonhole Principle

The pigeonhole principle is an extremely simple yet powerful
tool to prove combinatorial facts. It says that if you try to put n + 1
pigeons in n holes, then some hole must get at least 2 pigeons.

Example: Intersecting Families of Sets

How large can a family of subsets of [n] be, if every two sets in the
family must intersect?

If we want to find lots of subsets of [n] that all intersect each other,
one option is to pick all the sets that contains 1. This gives 2n−1 dif-
ferent sets, and all of them intersect each other. Another option is to
pick all the sets of size bigger than n/2. If n is odd, this also gives
2n−1 sets that intersect each other. It turns out there are no larger
families of sets that all intersect each other!

To prove this, we use the pigeonhole principle. We will define 2n−1

holes, where each hole consists of a pair of sets where every set A
is paired with its complement Ac. There are 2n options for A, and
each pair contains exactly two sets, so this gives 2n/2 = 2n−1 pairs.
Now suppose we have m sets that all intersect each other. These m
sets are our pigeons. Put each pigeon in the hole that contains it. If
m > 2n−1, there are more pigeons than holes, so there will be a hole
that contains 2 pigeons. But this cannot happen, because then there
will be a pigeon A and a pigeon Ac, which means our family of sets
do not all intersect each other, since A ∩ Ac = ∅.

Example: The Erdös-Szekeres Theorem

What is the length of the longest increasing or decreasing subse-
quence in a given sequence of n distinct numbers? We did not discuss this in class, by I

include it here because it is cool.If the sequence of n distinct numbers is 1, 2, 3, . . . , n, then there is
an increasing subsequence of length n, but the longest decreasing
subsequence has length 1. If the sequence is n, n− 1, . . . , 1, then there
is a decreasing subsequence of length n, but the longest increasing
subsequence has length at most 1.
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If n = m2, then consider the sequence

x = m, m− 1, . . . , 1, 2m, 2m− 1, . . . , m + 1, 3m, 3m− 1, . . . , 2m + 1, . . . .

The longest increasing subsequence of x has length at most m =
√

n,
and the longest decreasing sequence of x has length at most m =

√
n.

The Erdös-Szekeres theorem proves that this is the worst case
if you want to minimize the length of both the longest increasing
subsequence and the longest increasing subsequence. It is not really important that the

numbers be distinct. If they are not
distinct, we still get something about
the length of the longest non-increasing
subsequence and the length of the
longest non-decreasing subsequence.

Theorem 1. If n = m2 + 1, then every sequence of numbers either has
an increasing subsequence of length m + 1 or a decreasing subsequence of
length m + 1.

Proof. We use the pigeonhole principle. Our holes will be the points
of [m] × [m]. Our pigeons will be the elements of [n]. Say we are
given a sequence x = x1, . . . , xn. For every i ∈ [n], let ai be the length
of the longest increasing subsequence that ends at xi, and let bi be the
length of the longest decreasing sequence that begins at xi. Put the
pigeon i in the hole (ai, bi).

Now, if there is no increasing subsequence in x of length bigger
than m, and no decreasing subsequence in x of length bigger than
m, then for every i, ai ≤ m and bi ≤ m. So there are m2 holes, and
n = m2 + 1 pigeons that are each placed in those holes. By the
pigeonhole principle, two pigeons must end up in the same hole.
Suppose (aj, bj) = (ai, bi), for some i < j.

There are two cases. If xi < xj, then the longest increasing se-
quence ending at xi has length ai. But this means that there is an
increasing sequence of length ai + 1 ending at xj—just add xj to the
increasing sequence that ends at xi. So, we cannot have ai = aj.

If xi > xj, then the longest decreasing sequence ending at xi has
length bi. But this means that there is a decreasing sequence of length
bi + 1 ending at xj—just add xj to the decreasing sequence that ends
at xi. So, we cannot have bi = bj.

In either case, we get a contradiction, so it must be that x contains
either an increasing sequence of length m + 1 or a decreasing subse-
quence of length m + 1.

Example: Dirichlet’s Theorem

How accurately can we approximate a real number by a rational
number? We will not have time to discuss Dirich-

let’s theorem in class, and you will not
be tested on it. I include it here because
it is another cool application of the
pigeonhole principle.

The real numbers are all the numbers on the real line. The rational
numbers are numbers that can be expressed as p/q where p, q are
integers and q 6= 0. There are certainly real numbers, like

√
2, that are

not rational. If x is a real number, then for every q, we can certainly
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find p so that |x− p/q| < 1/(2q), since all of the multiples of 1/q are
only 1/q apart. But can we do better? Is it possible to approximate x
by a rational number with denominator q with a smaller error than
1/q?

For example, consider the number x = 0.55555555 . . . . This is a
real number. But if you try to approximate it with a rational number
where q = 1000 then the best approximation is 0.556 upto k decimal
places. The difference |x− 0.556| is 0.00044444 . . . which, after a little
bit of calculation, turns out to be the same as 4

9000 = 4
9 ·

1
q . No matter

how high the power of 10 you pick for q, you would end up with an
error of 4

9 ·
1
q .

Dirchlet proved that a much smaller error is possible to all num-
bers, as long as you choose the right denominator q! Moreover, the
proof is a simple use of the pigeonhole principle:

Theorem 2. Let x be a positive real number. Then for every positive integer
n, there is a rational number p/q such that 1 ≤ q ≤ n and

|x− p/q| < 1
qn
≤ 1

q2 .

Proof. To use the pigeonhole principle, we need to identify n + 1
pigeons and n holes. Consider the n holes[

0,
1
n

)
,
[

1
n

,
2
n

)
, . . . ,

[
n− 1

n
, 1
)

.

Recall that [u, v) is the interval contain-
ing all numbers x with u ≤ x < v.The n + 1 pigeons will correspond to the numbers

x, 2x, . . . , (n + 1)x.

For each of the numbers i · x in this list, let i · x = yi + εi, where yi is
an integer, and εi ∈ [0, 1] is the fractional part of i · x. Put the pigeon
i · x in the hole that contains εi.

By the pigeonhole principle, we must have i, j such that i · x, j · x
are in the same holes. Assume without loss of generality that i > j.
Then

(i− j) · x = (yi − yj) + (εi − εj),

so
|(i− j)x− (yi − yj)| < 1/n.

Dividing through by (i− j), we get

|x− (yi − yj)/(i− j)| < 1/(n(i− j)).

Set p = yi − yj and q = i− j to complete the proof.
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Probability

A probability space gives a very useful way to generalize the
idea of counting the size of sets. A probability space is defined by a
set Ω, usually called the domain or sample space, and a distribution. A
distribution is a function p : Ω → R mapping the elements of Ω to
real numbers so that There are many commonly used no-

tations for distributions. Sometimes
people write Pr or Prob instead of p.• For all x ∈ Ω, p(x) ≥ 0.

• ∑x∈Ω p(x) = 1.

A probability space captures the concept of a random process
happening. The elements x encode all the possible outcomes of the
process, and p(x) represents the chance that x is the outcome. How would you encode a single coin

toss as a porbability space?An event in the probability space is a subset E ⊆ Ω. The probabil-
ity of the event is p(E) = ∑x∈E p(x).

For example, suppose we toss a fair coin twice. Then the sample
space is Ω = {HH, TT, HT, TH}. The distribution puts equal weight
on all outcomes, so we have p(x) = 1/4 for every x ∈ Ω. If we
consider the subset E ⊆ Ω where the first coin toss is heads, then it is
of size 2 so p(E) = 2/4 = 1/2.

A very common situation is when the distribution is uniform over
the sample space, meaning that p(x) = p(y) for all x, y ∈ Ω. In this
case, the probability of an event E is exactly p(E) = |E|

|Ω|—it is just
the ratio of the size of E to the size of Ω. However, the nice thing that
probabilities make sense even when the sets Ω and E are of infinite
size.

Example

Suppose we toss a fair coin n times. What is the probability that the
number of heads is even?

Here the sample space consists of all 2n possible coin tosses. If E
denotes the event that the number of heads is even, then we have

|E| =
(

n
0

)
+

(
n
2

)
+

(
n
4

)
+ . . .

So, the probability that the number of heads is even is

|E|
|Ω| =

(n
0) + (n

2) + (n
4) + . . .

2n .

This looks like a complicated expression, but we can simplify it using
facts that we have proved about binomial coefficients. First, we know See Lecture 4 from January 10.

that 2n = (n
0) + (n

1) + (n
2) + . . . , and we also know that all the even
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coefficients sum to exactly the same value as all the odd coefficients
sum to. So, we have

|E|
|Ω| =

(n
0) + (n

2) + (n
4) + . . .

(n
0) + (n

1) + (n
2) + . . .

=
(n

0) + (n
2) + (n

4) + . . .
2((n

0) + (n
2) + . . . )

=
1
2

.

You can use a very similar argument
to prove that the probability that the
number of heads is odd is 1/2.

Example

Suppose you take a uniformly random walk in a grid, starting from
the point (0, 0) and ending at the point (n, n), and always moving
either up or right, what is the probability that you cross the diagonal?

(n,n)

(n-1,n+1)

Figure 1: We discussed walking on the
grid in Lecture 3 on January 8.

In previous lectures, we calculated the total number of such walks
to be |Ω| = (2n

n ). We also calculated the number that cross the diago-
nal as |E| = n

n+1 · (
2n
n ). So, the probability of crossing the diagonal is

n
n+1 ·(

2n
n )

(2n
n )

= n
n+1 .
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