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We discuss some examples using the inclusion-exclusion principle.

Last time, we proved the inclusion-exclusion formula. Given sets
A1, . . . , An, and a subset I ⊆ [n], let us write AI to denote the inter-
section of the sets that correspond to elements of I:

AI =
⋂
i∈I

Ai.

We proved:

Fact 1.
∣∣∣⋃i∈[n] Ai

∣∣∣ = ∑∅ 6=I⊆[n](−1)|I|+1 · |AI |.

Example: Number of Derangements

How many ways are there to arrange n items so that for every j, the
j’th item is not in the j’th position? This may seem familiar: you had to

calculate the number of derangements
for small valules of n in the homework.

Define Aj to be the set of permutations where j is mapped to j. So
|AI | = (n − |I|)!. Then the set of permutations that do not leave an
element in its positions is just

n!−

∣∣∣∣∣∣ ⋃j∈[n] Aj

∣∣∣∣∣∣ = n!− ∑
∅ 6=I⊆[n]

(−1)|I|+1 · |AI | by the inclusion-exclusion principle

=
n

∑
i=0

(−1)i
(

n
i

)
(n− i)! = n! ·

n

∑
i=0

(−1)i

i!
.

Note that ∑n
i=0

(−1)i

i! is a truncation of the Taylor series expansion for

e−1 = ∑∞
i=0

(−1)i

i! , so this quantity is approximately n!
e .

Example: Euler’s Totient function

Given a positive integer N, with prime factorization pe1
1 pe2

2 · · · p
et
t ,

how many numbers from 1 to N are relatively prime to N? Two numbers N and M are relatively
prime if the greatest common divisor of
N and M is 1.

This quantity is called Euler’s Totient function φ(N). Euler’s to-
tient function is important to estimate, because it tells us something
about many crypto systems whose security relies on the difficulty of
factoring large numbers. If many numbers M from 1 to N have com-
mon factors with N, then you can find a factor of N by computing
the greatest common divisor of M and N using Euclid’s algorithm.
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So, for a crypto system to have good security, it better use a number
N for which φ(N)/N is very close to 1. Otherwise, you could pick a
random number M from 1 to N and compute the gcd with N to find
a factor of N and break the cryptosystem.

Let Ai denote the set of numbers from 1 to N that are divisible by
pi. Then |AI | = N

∏j∈I pj
. So the number of relatively prime numbers is

N − ∑
∅ 6=I⊆[t]

(−1)|I|+1|AI |

=(−1)|∅|
N

∏j∈∅ pj
− ∑

∅ 6=I⊆[t]
(−1)|I|+1 N

∏j∈I pj
. the first term corresponds to N, and

we substituted the value of |AI | in the
second term

Now, we can combine the term corresponding to N with everything
else to get:

= ∑
I⊆[t]

(−1)|I|
N

∏j∈I pj
= N · ∑

I⊆[t]
(−1)|I|

1
∏j∈I pj

.

The sum we have is exactly the same as:

= N ·
t

∏
i=1

(1− 1/pi).

The reason this works is that, for example when you multiply (1−
1/p1)(1− 1/p2), you get 4 terms

1− 1/p1 − 1/p2 + 1/(p1 p2),

corresponding to the 2 choices 1 or −1/p1 from the first product
term, and the 2 choices 1 or −1/p2 from the second product term.
In general, when you multiply t such product terms, you will get 2t

terms in the sum, and those are exactly the 2t terms we obtained.
The formula we have obtained has a very natural interpretation: This intuition is not a proof: the ar-

gument ought to work only when the
numbers p1, p2, . . . are distinct prime
divisors of N.

intuitively 1/p1 fraction of the numbers from 1 to N are divisible by
p1. After we eliminate these, we are left with N(1− 1/p1) numbers.
We should expect 1/p2 fraction of these to be divisible by p2, which
leaves N(1− 1/p1)(1− 1/p2) numbers and so on.

Example: Ryser’s Formula for the Permanent
We will not have the time to discuss
Ryser’s formula in class, and you will
not be tested on it. I describe it here
because it is another cool application of
the inclusion-exclusion principle that is
relevant to computer science.

The permanent of an n× n matrix M is defined to be

perm(M) = ∑
permutations π : [n]→ [n]

n

∏
i=1

Mi,π(i).

Computing the permanent is a very important fundamental prob-
lem in computer science. We do not know of any algorithms that
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run in less than exponential time. Moreover, if we could compute
the permanent in polynomial time, then we could solve all the al-
gorithmic problems in the hard complexity class NP in polynomial
time as well! For example, this would give us efficient algorithms for
all machine learning problems. This would be true even if we could
evaluate the permanent on matrices whose entries are either 0 or 1.

However, we do not know any fast algorithms for computing the
permanent. The most naive algorithm would be to run over all the
permutations π : [n] → [n] and compute the sum according to the
formula for the permanent. This would take time about n · n!. Here
we show how to use the inclusion-exclusion principle to get a much
faster algorithm that runs in time 2O(n).

Ryser’s formula says:

perm(M) = (−1)n ∑
S⊆[n]

(−1)|S|
n

∏
i=1

∑
j∈S

Mi,j.

This formula can be evaluated in time proportional to 2n · n2. The
formula holds for all matrices, but for simplicity let us just prove it
for matrices M that have 0/1 entries.

Then the formula

perm(M) = ∑
permutations π

n

∏
i=1

Mi,π(i)

just counts the number of sequences j1, j2, . . . , jn ∈ [n] such that
j1, . . . , jn is a permutation of 1, 2, . . . , n, and M1,j1 M2,j2 . . . Mn,jn =

1. If we did not have the restriction that j1, . . . , jn corresponds to a
permutation, then the number of such sequences would be easy to
compute, it would be equal to

n

∏
i=1

n

∑
j=1

Mi,j.

So, let Ai denote the set of sequences j1, . . . , jn where i does not
appear in the sequence, and M1,j1 M2,j2 . . . Mn,jn = 1. Then we see that
|Ai| = ∏n

i=1 ∑j 6=i Mi,j. Similarly, given any set I ⊆ [n], we have∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ = n

∏
i=1

∑
j/∈I

Mi,j.

The permanent is just the total number of sequences, minus the
elements of

⋃
i∈[n] Ai, so by the inclusion-exclusion formula, it is
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equal to:

perm(M) =
n

∏
i=1

n

∑
j=1

Mi,j −

∣∣∣∣∣∣ ⋃i∈[n] Ai

∣∣∣∣∣∣
=

n

∏
i=1

n

∑
j=1

Mi,j − ∑
∅ 6=I⊆[n]

(−1)|I|+1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ now use |
⋂

i∈I Ai | = ∏n
i=1 ∑j/∈I Mi,j

= ∑
I⊆[n]

(−1)|I|
n

∏
i=1

∑
j/∈I

Mi,j the first term corresponds to I = ∅

= ∑
S⊆[n]

(−1)n−|S|
n

∏
i=1

∑
j∈S

Mi,j setting S to be the complement of I

= (−1)n ∑
S⊆[n]

(−1)|S|
n

∏
i=1

∑
j∈S

Mi,j.


