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We continue our discussion of binomial coefficients. We also discuss
the inclusion-exclusion principle.

Combinations

So far, we have been counting the number sequences one can
generate using a set. Let us now turn to counting the number of sets.

Identities involving binomial coefficients

The function (n
k) satisfies a number of interesting identities. Usu-

ally, these identities are very easy to prove once you guess where
they come from.

Fact 1. (n
k) = ( n

n−k).

It is is easy to check this fact just by comparing the formulas, but
there is a nice interpretation of it too. The point is that for every set S
of size k, the complement Sc is a set of size n− k. Moreover, the com-
plement uniquely determines the set S. So, the number of ways of
picking S is the same as the number of ways to pick its complement.

Fact 2. (n
k) = (n−1

k−1) + (n−1
k ).

To see this, we count the number of sets S ⊆ [n] of size k in two
steps. In the first step, we count all the sets that contain 1. There are
exactly (n−1

k−1) such sets, because we are picking k − 1 elements from
{2, . . . , n}—a set of size n − 1. In the second step, we count all the
sets that do not contain 1. There are exactly (n−1

k ) such sets, because
we have to pick all k of the elements from {2, 3, . . . , n}. This counts
all of the sets of size k.

Fact 3. (n
k) =

n−k+1
k · ( n

k−1).

To prove it, compute(
n
k

)
/
(

n
k− 1

)
=

n! · (k− 1)! · (n− k + 1)!
k! · (n− k)! · n!

=
n− k + 1

k
.

Since n− k + 1 ≥ k when k ≤ n+1
2 and n− k + 1 ≤ k when k ≥ n+1

2 ,
the largest binomial coefficient is the middle one(s), when k is about
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Figure 1: The largest binomial coeffi-
cients are the ones near the middle.

n+1
2 . When n is even, the largest coefficient is ( n

n/2). When n is odd,
the largest coefficients are ( n

(n+1)/2) and ( n
(n−1)/2). For example, we calculated the number

of paths in the grid that do not cross the
diagonal as(

2n
n

)
−
(

2n
n− 1

)
=

(
2n
n

)
(1− n

2n− n + 1
)

=
1

n + 1
·
(

2n
n

)
.

The binomial coefficients get their name from the following iden-
tity:

Fact 4. (x + y)n = ∑n
i=0 (

n
i ) · xiyn−i.

The proof follows by expanding (x + y)n = (x + y)(x + y) . . . (x +

y) using the distributive law. The term xiyn−i shows up whenever
x is chosen from i of these product terms, and y is chosen from the
remaining n− i. So, there are exactly (n

i ) for this term to show up in
the product.

A special case of the above identity is:

Fact 5. 2n = ∑n
i=0 (

n
i ).

This follows from setting x = 1 = y. Another way to see the same
identity is to observe that 2n counts all the subsets of [n], while (n

i )

counts the number of subsets of size i.
Another special case of the above identity is:

Fact 6. ∑odd i (
n
i ) = ∑even i (

n
i ).

You can prove that by setting x = −1, y = 1, which proves that
0n = ∑n

i=0 (
n
i )(−1)i.

Asymptotic Estimates

It can be hard to understand how large the binomial coefficients
and factorials can get. Here are some useful estimates.
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We have Stirling’s approximation, which says:

Fact 7. n! ≈
√

2πn ·
( n

e
)n.

Stirling’s approximation does give some estimate about the size of
binomial coefficients. For example, when n is even and k = n/2, we
have (

n
k

)
=

n!
k!(n− k)!

≈
√

2πn · (n/e)n
√

2πk · (k/e)k
√

2π(n− k) · ((n− k)/e)n−k

=

√
1

π/2 · n · 2
n.

In other words, the sets of size n/2 consist of about 1/
√

πn/2 frac-
tion of all the sets.

Figure 2: A plot showing the accuracy
of stirling’s approximation. Note that
ln((x/e)x) = x ln x− x.

Another useful bound:

Fact 8.
( n

k
)k ≤ (n

k) ≤
( en

k
)k.

Inclusion-Exclusion Principle

Often we want to count the size of the union of a collection of
sets that have a complicated overlap. The inclusion exclusion princi-
ple gives a way to count them.

Given sets A1, . . . , An, and a subset I ⊆ [n], let us write AI to
denote the intersection of the sets that correspond to elements of I:

AI =
⋂
i∈I

Ai.

Fact 9. ∣∣∣∣∣∣ ⋃i∈[n] Ai

∣∣∣∣∣∣ = ∑
∅ 6=I⊆[n]

(−1)|I|+1 · |AI |.

For example, if we have two sets A, B then the formula says

|A ∪ B| = |A|+ |B| − |A ∩ B|.

Intuitively, when we count |A|+ |B|, we have overcounted all of the
elements in the intersection, so subtracting those out gives the right
value.

A
B

C

1-0+0

1-0+0

1-0+0

2-1+0
3-3+1

2-1+0

2-1+0

Figure 3: The union of 3 sets. The
numbers show the number of times
each region is counted by the inclusion-
exclusion formula when it counts the
size of the intersections of 1 set, 2 sets
and 3 sets.

If we have three sets A, B, C then we have

|A∪ B∪C| = |A|+ |B|+ |C| − |A∩ B| − |A∩C| − |B∩C|+ |A∩ B∩C|.
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Intuitively, the sum |A| + |B| + |C| overcounts all the elements that
are in two of the sets, so we need to subtract the pairwise intersec-
tions. However, then we have undercounted all the elements that
appear in all three sets, so we need to add those back in.

To prove that the formula is correct, let us consider how many
times it counts each element x ∈ ⋃

i∈[n] Ai. Suppose x occurs in k If x is not in the union, then it is cer-
tainly never counted by the formula.of the sets A1, . . . , An, and without loss of generality assume that the

element is in A1, . . . , Ak.
Then the number of times x is counted in the inclusion-exclusion

formula is exactly(
k
1

)
−
(

k
2

)
+

(
k
3

)
−
(

k
4

)
+ . . . + (−1)k+1

(
k
k

)
.

We claim that this quantity is exactly 1! Indeed, we have seen that see Fact 6

∑
even i

(
k
i

)
= ∑

odd i

(
k
i

)
,

which implies that

1 =

(
k
0

)
=

(
k
1

)
−
(

k
2

)
+

(
k
3

)
−
(

k
4

)
+ . . . + (−1)k+1

(
k
k

)
.

Thus, every element is counted exactly once in the formula, and the
total is the number of elements in the union

⋃
i∈[n] Ai.
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