
Lecture 23: Randomized Algorithms
Anup Rao

March 5, 2018

We discuss a few randomized algorithms.

So far in this course we have been learning the basic concepts of
probability and counting. We have seen some examples of how these
concepts can be used for applications like load balancing, polling,
building a classifier and so on. In the remaining part of the course,
we explore how these ideas can help with the design of randomized
algorithms.

Graph Coloring

Suppose you are given an undirected graph and want to color each
of the vertices red, blue or green, in such a way that the number of
edges that gets two distinct colors is maximized. There is a greedy
algorithm to do this, but here we give a simple algorithm:

Input: Undirected graph G with m edges
Result: A coloring of the vertices with 3 colors
Color every vertex with a uniformly random color.

For every edge e, let Xe denote the random variable that is 1 if the
edge gets two distinct colors, and 0 otherwise. Then the number of
edges colored with distinct colors is ∑e Xe.

For each edge e, the probability that the two colors of its vertices
are the same is exactly 1/3. Thus E [Xe] = 0 · 1/3 + 1 · 2/3 = 2/3.
By linearity of expectation, this means that E [∑e Xe] = ∑e E [Xe] =

2m/3. Thus the algorithm colors 2m/3 edges with distinct colors in
expectation.

By Markov’s inequality, the probabilty that this algorithm finds
a coloring that miscolors (1.1)(m/3) edges is at most 1/(1.1). So,
repeating the algorithm t times, the probability that the algorithm
fails to find a coloring that miscolors at most (1.1)m/3 edges is at
most 1/(1.1)t, which can be made very small.

Dominating Set

We are given an undirected graph on n vertices with the guarantee
that every vertex in the graph has degree at least ∆. We want to find
a dominating set: a small set of vertices S such that every other ver-

lecture 23: randomized algorithms 2

tex in the graph is either contained in S or is a neighbor of S. For a
parameter p, consider the following algorithm:

Input: Undirected graph G
Result: A dominating set
Include every vertex of the graph in the set X with probability p.
Let Y be the set of all vertices that are excluded from X and are
not a neighbor of X. Output X ∪Y.

Clearly, the output of the algorithm is always a dominating set.
Now let us calculate the size of the set in the output. Since every
vertex is included in X with probability p, by linearity of expectation,
E [|X|] = pn.

For any vertex v let Yv be 1 if v is in Y, and 0 else. Since v has
degree at least ∆, we have that Pr[Yv = 1] ≤ (1 − p)1+∆. Thus
E [|Y|] = ∑v E [Yv] ≤ (1− p)1+∆n.

So E [|X ∪Y|] ≤ pn + (1− p)1+∆n. Since (1− x) ≤ e−x, we get that
the expected size is at most pn + e−p(1+∆)n. Set p = ln(1 + ∆)/(1 +

∆). Then the expected size of the output is n(1 + ln(1 + ∆))/(1 + ∆).
As in the previous section, we can use Markov’s inequality to get

an algorithm that finds a dominating set of size close to n(1 + ln(1 +

∆))/(1 + ∆).

Min-Cut

We are given an undirected graph and want to partition the vertices
into two non-empty sets A, B, such that the number of edges that
cross from A to B is minimized. Consider the following simple algo-
rithm:

Input: Undirected graph G
Result: A partition A, B
Repeatedly do the following as long as the graph has more than
2 vertices: pick a uniformly edge that connects two distinct
vertices and merge them. Output the partition that corresponds
to the two vertices that are left at the end.

We shall show that this algorithm find the minimum cut with non-
negligible probability. Suppose the min-cut has k edges. Then the
algorithm finds this min-cut if and only if none of these k edges are
picked to do a merge by the algorithm.

Observe that every vertex must have at least k neighbors, or the
vertex by itself would give a smaller cut. This means that the graph
has at least nk/2 edges. The probability that we pick one of the k

lecture 23: randomized algorithms 3

Figure 1: An execution of the
randomized algorithm for Min-
cut. This execution finds the cut
indicated by black vertices.

edges of the min-cut for the merge is at most k/(nk/2) ≤ 2/n. As-
suming that one of these edges is not picked, then again we must
have that every vertex in the new graph has degree at least k, or we
would get a smaller min-cut in the original graph. Continuing in this
way, we get that the probability that the k edges of the min-cut are
never picked is at least(

1− 2
n

)(
1− 2

n− 1

)(
1− 2

n− 2

)
. . .

(
1− 2

4

)(
1− 2

3

)
=

(
n− 2

n

)(
n− 3
n− 1

)(
n− 4
n− 2

)
. . .

(
2
4

)(
1
3

)
=

2
n(n− 1)

.

This is a small probability, but imagine we just repeat the above
algorithm t times and then output the best cut that we find. Then the
probability that every run of the algorithm does not find the min-cut

is at most
(

1− 2
n(n−1)

)t
≤ e−

2t
n(n−1) . If we set t � n(n − 1), this

probability is extremely small.

