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We discuss a method to reconstruct distributions from their samples.

Throughout this course we have worked with the idea of an un-
derlying probability space that controls how samples are generated.
Sometimes, we know the parameters of the probability space—we
know the pdf or cdf. But often, we are working with a distribution
that we do not completely understand, and we want to reconstruct its
parameters using data.

For example, suppose you work at a ride-sharing service. All the
drivers that use the service get ratings from customers. How can
you compare two different drivers? You could use just the average of
the ratings, but this might be too coarse a measure. Clearly a driver
whose every rating is 3 stars is very different than a driver who has
50% 1’s and 50% 5’s. The first driver seems to be much more consis-
tent than the second driver, even though both have an average rating
of 3.
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(a) µ = 0, σ = 1/100.
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(b) µ = 2, σ = 1.
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(c) µ = 8/3, σ = 1.2469.
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(d) µ = 17/5, σ = 1.3564.

Figure 1: Some examples show-
ing attempts to fit Normals to
data.

One approach for the above problem might be to assume that
ratings for each driver are normally distributed (and then rounded
to the nearest integer). Given that the normal distribution is so fre-
quently observed in practice, this might (or might not) be a reason-
able assumption. If this was true, it looks like both drivers have nor-
mals that have mean 3, but the seond driver has a higher variance
than the first driver. Can we actually come up with an estimate for
the variance given the data?

Another setting where this might be useful is in trying to make
predictions. Suppose you are running google and you want to under-
stand the probability that you get a certain number of search requests
in between 10 am and 11 am next Saturday. One approach would be
to assume that the number of requests is distributed according to a
Poisson distribution, and then try to estimate the parameter λ for the
Poisson based on data about the number of requests for all of the last
100 Saturdays.

Maximum likelihood estimation is a method to reconstruct the param-
eters of the underlying distribution from the data. The intuition is to
pick the parameters for the distribution that maximize the likelihood
that the given data would have shown up.
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Example: Estimating the bias of a coin

Suppose you toss a coin 5 times, and see 3 heads. What is the best
estimate for the bias of the coin?

If the bias is p, then the probability of seeing k heads is exactly
(5

3)p3(1− p)2. So, we define the likelihood of 3 given our estimate θ

to be:

L(3|θ) =
(

5
3

)
θ3(1− θ)2.

Our goal is to find the θ that maximizes the likelihood, so we take the
derivative:

d
dθ

L(k|θ) =
(

5
3

)
· (3θ2(1− θ)2 − 2θ3(1− θ)).

The derivative is 0 exactly when

(3θ2(1− θ)2 − 2θ3(1− θ)) = 0

⇒3(1− θ) = 2θ

⇒θ = 3/5.

To check that this is in fact a maximum, we take the second deriva-
tive

d2

dθ2 L(k|θ)

=

(
5
3

)
· (6θ(1− θ)2 − 6θ2(1− θ)

− 6θ2(1− θ) + 2θ3

=

(
n
k

)
θ(6(1− θ)2 − 12θ(1− θ) + 2θ2)

=

(
n
k

)
θ(14θ2 − 24θ + 6).

When θ = 3/5, we have (14θ2 − 24θ + 6) = −3.36 ≤ 0, so this is
actually a global maximum.

Example: Estimating the mean of a normal

Suppose you are given data points x1, x2, . . . , xn and you know that
they all came from the same normal, and that normal has variance 1.
Can we estimate the mean using maximum likelihood?

Recall that the pdf of the normal is:

1√
2πσ

· e−
(x−µ)2

2σ2 =
1√
2π
· e−

(x−µ)2
2 ,

since σ = 1 by assumption.
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We define the likelihood of x1, . . . , xn to be a function of our esti-
mate θ for the mean to be:

L(x1, . . . , xn|θ) =
n

∏
i=1

1√
2π
· e−

(xi−θ)2

2 ,

and now we want to find the the θ that maximizes the likelihood. To
solve this problem, we use calculus. First note that

ln L(x1, . . . , xn|θ) =
n

∑
i=1
−1

2
· ln(2π)− (xi − θ)2

2
.

To maximize this, we look for a point at which the derivative with
respect to θ is 0.

d
dθ

ln L(x1, . . . , xn|θ) =
n

∑
i=1

(xi − θ) = (
n

∑
i=1

xi)− nθ.

This quantity is 0 when θ = (1/n) ·∑n
i=1 xi, as you might expect. This

setting of θ does in fact give the maximum, since you see that for all
lower values of θ the derivative is positive, and for all higher values,
the derivative is negative—the likelihood is increasing until you hit
the average of the samples—and then it decreases.

The systematic way to verify that this is indeed the maximum is to
consider the second derivative:

d2

dθ2 ln L(x1, . . . , xn|θ) = −n.

Since the second derivative is negative, the point we have found must
be a local maximum, and it is in fact a global maximum since it is the
only point where the derivative is 0.

Example: Estimating both the mean and the standard deviation of a nor-
mal

Suppose the setup is exactly like before—we have n samples x1, . . . , xn,
and we want to estimate both the mean and the standard deviation of
the underlying normal.

This time, there are two parameters, so the likelihood should be
defined:

L(x1, . . . , xn|θ1, θ2) =
n

∏
i=1

1√
2πθ2

· e−
(xi−θ1)

2

2θ2 .

As before, we have:

ln L(x1, . . . , xn|θ1, θ2) =
n

∑
i=1
−1

2
ln(2πθ2)−

(xi − θ1)
2

2θ2
.

The partial derivative with respect to θ1 is

∂

∂θ1
ln L(x1, . . . , xn|θ1, θ2) =

n

∑
i=1
− (xi − θ1)

θ2
,
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and setting this to 0, we get

n

∑
i=1
− (xi − θ1)

θ2
= 0

⇒
n

∑
i=1

(xi − θ1) = 0

⇒θ1 = (1/n) ·
n

∑
i=1

xi,

exactly as before. To solve for θ2, we take the partial derivative with
respect to θ2:

∂

∂θ2
ln L(x1, . . . , xn|θ1, θ2) =

n

∑
i=1
−1

2
· 2π

2πθ2
+

(xi − θ1)
2

2θ2
=

n

∑
i=1

(xi − θ1)
2 − θ2

2θ2
.

Setting this to be 0, we see

n

∑
i=1

(xi − θ1)
2 − θ2

2θ2
= 0

⇒θ2 = (1/n) ·
n

∑
i=1

(xi − θ1)
2.

In words, the maximum likelihood estimator for the variance is the
average observed variance.

Our estimator for the mean of the distribution was x1+x2+...+xn
n .

This is a unbiased estimator, in the sense that if the underlying distri-
bution had mean µ, then the expected value of our own estimate is
also µ.

It turns out that our estimate for the variance is not unbiased. One
can show that the estimator

θ2 = (1/(n− 1)) ·
n

∑
i=1

(xi − θ1)
2

is an unbiased estimator.


