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We discuss the Chernoff Bound.

The central limit theorem is not always the most useful way to
understand the distribution of the average of a number of indepen-
dent samples from the same distribution. Although the CLT asserts
that such an average converges to the normal distribution (after all
he right scaling is done), it does not tell us how fast the convergence
happens.

The Chernoff bound gives a much tighter control on the proba-
bility that a sum of independent random variables deviates from its
expectation. Although here we study it only for for

the sums of bits, you can use the same
methods to get a similar strong bound
for the sum of independent samples for
any real-valued distribution of small
variance. We do not discuss the more
general setting here.

Suppose X1, . . . , Xn are independent random variables taking
values in {0, 1}, and let X = X1 + X2 + . . . + Xn be their sum, and
E [X] = µ. There are many forms of the Chernoff bounds, but here
we focus on this one:

There are several other kinds of bounds
like Hoeffding bounds and Azuma’s
inequality that are closely related to
Chernoff bounds.

Theorem 1. Suppose 0 < δ, then

p(X ≥ (1 + δ)µ) ≤ e−
δ2µ
2+δ ,

and
p(X ≤ (1− δ)µ) ≤ e−

δ2µ
2 .

You can combine both inequalities into one if you write it like this:

Theorem 2. Suppose 0 < δ, then

p(|X− µ| > δµ) ≤ 2e−
δ2µ
2+δ .

The proof is conceptually similar to the proof of Chebyshev’s
inequality—we use Markov’s inequality applied to the right function
of X. We will not do the whole proof here, but consider the random
variable eX .

We have

eX = eX1+X2+...+Xn = eX1 · eX2 · eX3 . . . eXn .

Since X1, X2, . . . , Xn are mutually independent, this means that

E

[
eX
]
= E

[
eX1 . . . eXn

]
= E

[
eX1
]

. . . E

[
eXn
]

.

Now we have

E

[
eX1
]
= pe1 + (1− p)e0 = p(e− 1) + 1 ≤ ep(e−1). since 1 + y ≤ ey for all y
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So, by Markov’s inequality,

p(X > an) = p(eX > ean) ≤ E
[
eX]

ean = en(p(e−1)−a),

which is exponentially small in n, when a > p(e − 1). The actual
proof of the Chernoff bound comes from using calculus to determine
the right constant to use instead of e in the above argument.

Example: Fair coin

Suppose you toss a fair coin 200 times. How likely is it that you see
at least 120 heads?

The Chernoff bound says

p(X ≥ 120) = p(X ≥ (1 + 20/100)100)

≤ e−
(1/5)2)
2+1/5 ·100 = e−20/6 = 0.0356.

Example: Polling

Suppose we want to conduct a national poll to estimate the fraction
of people that support the Green party. We can just sample n uni-
formly random people and ask them if they support the party or not.
What can we say about the accuracy of our poll?

To set this up, let us imagine that the true fraction of the country
that supports the Green party is p. Let Xi be the indicator variable
for whether or not the i’th person polled supports the Green party.
Then X1, . . . , Xn are independent Bernoulli variables, each of which is
1 with probability p. If we set X = X1 + X2 + . . . + Xn, then we have
E [X] = np.

Suppose we want our estimate to be within θ of p. The Chernoff
bound gives:

p(|X/n− p| > δp) = p(|X− pn| > δpn) ≤ 2e−
δ2 p
2+δ ·n.

Setting δp = θ, we get

p(|X/n− p| > θ) ≤ 2e−
θ2/p2 ·p
2+θ/p ·n = 2e−

θ2
2p+θ ·n ≤ 2e−

θ2
2+θ ·n,

where in the last inequality we used the fact that p ≤ 1.
So, if we want the probability of our estimate being off by θ to be
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at most ε, then we want

2e−
θ2

2+θ ·n ≤ ε

⇒e
θ2

2+θ ·n ≥ 2/ε

⇒ θ2

2 + θ
· n ≥ ln(2/ε)

⇒n ≥ 2 + θ

θ2 · ln(2/ε).

As long as n satisfies is large enough as above, we have that p −
θ ≤ X/n ≤ p + θ with probability at least 1− δ. The interval [p− θ, p + θ] is sometimes

called the confidence interval.For example, if we want θ = 0.05, and ε to be 1 in a hundred, we
need to set n ≥ 4345.

Example: Distributed Load Balancing

A common problem when handling a large website is load balancing.
You have k servers dedicated to handling jobs, and you get n � k
jobs. How do you distribute the jobs?

Of course, you would like to distribute these jobs to the k servers
as evenly as possible, but this is not as simple as it seems. The n
jobs could be coming in a distributed fashion, so there is no single
computer that knows how many requests are out there.

A simple solution is to just assign the requests to servers com-
pletely randomly. If we do this, we expect that each server will see
n/k jobs on average. What can we say about the maximum load expe-
rienced by any one server?

Let X1, . . . , Xk denote the number of jobs assigned to each of the
servers. Then we see that each Xi is a binomial random variable,
since each job is assigned to server i with probability 1/k. Are X1, . . . , Xk independent?

Claim 3. If n > 9k ln k, then p(Xi > n/k + 3
√

n ln k/k) < 1/k3.

To see the claim, we apply the Chernoff bound from Theorem 1

with δ = 3
√

k ln k/n < 1:

p(Xi > n/k + 3
√

n ln k/k) = p(Xi > n/k(1 + 3
√

k ln k/n))

≤ e−
(3
√

k ln k/n)2
3 ·n/k

= e−3 ln k = 1/k3.

For example, if we have a thousand servers and a million jobs, this
bound says that the probability that a single server sees more than
1000 + 3

√
1000 ln 1000 = 1249.38 jobs is at most one in a billion!

By the union bound, the probability that any single server sees
more than n/k + 3

√
n ln k/k jobs is at most k · 1/k3 = 1/k2. This is

still one in a million for the numbers we have picked.


