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We discuss the central limit theorem.

There is a good reason why we should expect to see the normal
distribution show up in nature quite often. That reason is the central
limit theorem. The theorem asserts that the average value of n sam-
ples must converge to the normal distribution in probability. We will
get to what that means in a second.

The Central Limit Theorem

The central limit theorem expresses the fact that whenever you
take the sum of many independent identically distributed random
variables, you end up with something that looks like the normal
distribution. To state the theorem in way that is true requires careful
thought about the right definitions to use. Before we do that, let us
look at the examples shown in Figure 1, 2 and 3.

Theorem 1. Given any real-valued distribution with expectation µ and
standard deviation σ, suppose X1, X2, . . . , Xn are sampled independently
according to this distribution and

Yn =
X1 + X2 + . . . + Xn − nµ

σ
√

n
.

Then the cdf of Yn converges to the cdf of the standard normal, in the sense
that for every α,

lim
n→∞

p(Yn ≤ α) =

α∫
−∞

e−x2/2 dx.

Note that
α∫
−∞

e−x2/2 dx is just the cdf of the normal distribution

with mean 0 and standard deviation 1. So, the theorem asserts that
the cdf of the average convergers to the cdf of the standard normal. The proof of the central limit theorem

is pretty complicated, so we will not
discuss it in this course.

Using the Normal Distribution as an Approximator

The central limit theorem suggests that when we are studying
the average of many independent samples from the same distribu-
tion, then the normal distribution is a good approximator for the
average. Beware: the CLT does not say how fast

the average converges to the normal,
so you never really know if n is large
enough for the approximation to be
good.
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Figure 1: The CLT in pictures—
several examples of binomial
distributions, along with the
pdf of the normal distribution
with the same mean and vari-
ance are shown. In each case,
the mean of the normal is set
to np and the variance is set to
np(1− p).
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Figure 2: The CLT in pictures—
several examples of Poisson dis-
tributions, along with the pdf
of the normal distribution with
the same mean and variance are
shown. Recall that the sum of
two Poisson’s with parameter
λ is a Poisson with parameter
2λ, so as λ gets larger, the nor-
mal should approximate the
Poisson, because the Poisson is
the sum of many independent
Poissons with smaller λ.
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Figure 3: The CLT in pictures—
several examples showing the
pdf of the sum of n indepen-
dent exponential distributions
with λ = 1, along with the pdf
of the normal distribution with
the same mean and variance.
The sum of n independent ex-
ponentials is called the Erlang
distribution—it is the waiting
time for the first n events to oc-
cur in the Poisson distribution.
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New Variables from Old Variables

If one random variable is obtained by combining some others,
there are a couple of ways one might go about figuring out the new
variables pdf and cdf. For example, suppose 0 ≤ X has pdf f (x) and
cdf F(x), and we want to compute the pdf and cdf of

√
X. How can

we do it?
Let us start with the cdf of

√
X, because this is easier. If Z =

√
X,

then the cdf

G(z) = p(Z < z) = p(
√

X < z) = p(X < z2) = F(z2).

Then we can easily recover the pdf of
√

X by taking the derivative of
G(z2). For example, if X is uniformly distributed between 0 and 1,
we get that the cdf G(z) is
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Figure 4: The cdf and pdf of√
X, when X is uniform be-

tween 0 and 1.

G(z) =

0 if z < 0 or z > 1.

z2 if 0 ≤ z ≤ 1.

So, the pdf of
√

X must be:

g(z) =

0 if z < 0 or z > 1.

2z if 0 ≤ z ≤ 1.

We can also calculate the pdf of Z directly. Observe that the prob-
ability that Z is in the rectangle near z is g(z) dz, and this should
be the same as as the probability that X is in the rectangle under x,
which has area f (x) dx. So we get that

g(z) =
dx
dz
· f (x).

Since X = Z2 in the area of interest, this gives that

g(z) = 2z · f (z2),

which gives exactly the same pdf.
Similarly, if X, Y are independent, and have pdfs f (x) and h(y), we

can compute the pdf g(z) of Z = X + Y using the formula:

g(z) =
∞∫
−∞

f (x)h(z− y) dy.
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