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We continue our discussion of counting. Here we show how to use the
factorial function and binomial coefficients to count.

Counting

Now, we turn our attention to counting the sizes of different
kinds of sets. It is often useful to map the set we are interested in
counting to another kind of object, such as a function or a sequence,
to make it easier to count.

Example

Suppose S is a set that has n elements. How many elements does Sk

have?

s1

s2
To count there elements in Sk we use the product-rule. One way to

visualize this is to draw a rooted tree of depth k, where each internal
node has n children that correspond to the elements of S. Each step
in the tree corresponds to choosing an element of S, and the leaves
of the tree correspond to elements of Sk. The number of leaves in
the tree can be counted by noting that there are n choices for the
first step, then n choices for the second step, and so on, so the total
number of leaves is n× n× . . . = nk.

Example

Your brand new car comes with 5 possible color choices for the exter-
nal color—red, blue, magenta, white and black. There are 3 choices
for the internal trim—black leather, brown leather and vinyl. How
many possible configurations can you car have?

This is a simple applicaiton of the product rule. There are 5
choices for the paint, and 3 choices for the trim, so there are a total
of 5× 3 = 15 configurations available.

Example

Consider the set S = 2[n] that consists of all subsets of [n]. How many
elements does S have?
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Here it is helpful to view the elements of S using their indicator
vectors. Each element of S is a subset of [n], so its indicator vector is
the set of n-bit strings {0, 1}n. To count the number of n-bit strings,
we again use the product rule: there are 2 options for the first coor-
dinate, then 2 options for the second coordinate, and so on. So, the
number of n-bit strings is 2× 2× . . . = 2n. This shows that |S| is also
2n.

It is often easy to trick ourselves into using the product rule when
it is not the right thing to do, or use it incorrectly. Consider the fol-
lowing example:

Example

CSE312A has 4 sections and 6 TAs: Kaitlyn, Saidutt, Su, Joy, Alex and
Joshua. Each TA can teach more than one section. Anup wants to
assign the TAs to teach sections, in such a way that every section gets
at least one TA. How many ways are there to do this?

We can start by modeling the sections using the set [4], and let
A ⊆ [4] be the set of sections taught by Kaitlyn, and similarly let
B, C, D, E, F ⊆ [4] be the sets that encode the sections taught by each
of the other TAs. We saw above that there are 24 options for choosing
A. So, we might conclude that the number of ways to assign TAs
to the sections is 24 × 24 × 24 × 24 × 24 × 24 = 224 = 16, 777, 216.
However, this calculation is incorrect. Try to figure out why the calculation is

incorrect before you read on.The problem is that we have disregarded the fact that each section
must get at least one TA. The above calculation counts all possible
ways of assigning TAs to sections, including those that assign no
TAs to some sections. The fix is to model the situation differently.
Let W be the set of TAs assigned to the first section, and similarly
let X, Y, Z be the set of TAs assigned to the other sections. Now the
number of options for W is exactly 26 − 1 = 63. This is because there
are 26 possible subsets of the 6 TAs, and one of these subsets—the
empty set—is not allowed. After making this change, we can use the
product rule properly to conclude that the number of ways to assign
the TAs while making sure that each section gets at least one TA is
63 × 63 × 63 × 63 = 15, 752, 961, which is less than the incorrect
calculation gave us. What if we required that each section

gets at least 2 TAs? What would the
correct count be then?

Example

Jane has 3 children—Alice, Bob and Charlie. Jane has 5 books that
she would like to distribute to her 3 children. How many ways are
there for her to distribute the books?

Let us try to model the question using the sets we have defined.
The 5 books are 5 unique objects, so we can model them with the set
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[5] = {1, 2, 3, 4, 5}. The books Alice gets can be thought of a subset
A ⊆ [5], and similarly, the books Bob and Charlie gets can be viewed
as sets B, C ⊆ [5]. The number of options for the set A is exactly 25.
So our first thought might be that the number of ways to distributed
the books among Alice, Bob and Charlie is the number options for A
times the number of options for B times the number of options for C,
which is 25 · 25 · 25 = 215 = 32768. However, this calculation is not
right. Try to figure out why the calculation is

incorrect before you read on.The problem is that the same book cannot be given to both Alice
and Bob. In other words, the sets A, B, C must be pairwise disjoint—
they cannot share any elements. Jane cannot set A = {1}, B =

{1, 2}, C = {3, 4, 5}, while we did count such a setting in our count.
Another problem is that every book must be distributed to some-
one. Jane cannot set A = {2}, B = {3, 5}, C = {4}, because this
leaves the book corresponding to 1 unassigned. We also counted such
configurations in our count.

The issue can be resolved by picking a different model for the
problem. We need to break down the assignment of books to children
in terms of the books. Let b1 be the name of the person that gets book
1, and similarly b2, . . . , b5 be the names of the people that gets books
2, . . . , 5. Then we see that there are 3 options for b1, 3 options for
b2 and so on. So the total number of ways to distribute the books is
35 = 243. This is much smaller than our erro-

neous count from earlier.In the last lecture, introduced the product rule and used it to count
some sets. The product rule is most useful when the number of
choices available in each step is independent of the choices made
in previous steps. However, even if this is not the case, it is possible
to get counts on the number of options.

Introducing the Factorial Function

The factorial function is very useful for counting many kinds
of sets.

Example

How many ways are there to arrange the letters of the word GRAPE-
FRUIT?

Grapefruit has 10 letters. So there are 10 choices available for the
first letter. After we pick the first letter, we can no longer use the first
letter again. So there are only 9 choices available for the second letter,
an so on. In this way, we compute the number of arrangements to be
10× 9× 8× . . .× 2× 1 = 10!.
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In general, we define

n! = n · (n− 1) · (n− 2) · . . . · 2 · 1.

By convention, we set 0! = 1. This is verbalized as n factorial.

Example

How many 5 letter words with distinct letters can be made using the
English alphabet?

The number of choices for the first letter is 26. Given that first
choice, we are reduced to 25 choices for the second letter, and so on.
So the number of such words is 26× 25× 24× 23× 22 = 26!

23! .
In general, if we have a finite set S of n things, and want to know

how many sequences of length k can be generated from distinct ele-
ments of S, the answer is

P(n, k) =
n!

(n− k)!
.

A slightly different way to arrive at the same count is by consider-
ing the overcounting when we just count permutations. There are n!
ways of permuting the n items. For each of these ways, we can just
take the first k items in the order that they occur. This count certainly
includes every sequence of k elements, but it counts each sequence
many times. In fact, each sequence of k elements is counted exactly
(n − k)! times, because there are (n − k)! ways to permute the ele-
ments that come after the first k elements. So, the correct count is
again

P(n, k) =
n!

(n− k)!
.

The method of counting and then estimating the overcount is quite
handy.

Example

How many ways are there to rearrange the letters CARAVAN?
Caravan has 7 letters, but 3 of them are the same. If all 7 letters

were distinct, the answer would be 7!. Now consider what happens if
we make the 3 As distinct by viewing them as A, A’, A”. Then, a par-
ticular anagram like VANACAR can be written in 6 different ways:
VANA’CA”R, VANA”CA’R, VA’NACA”R, VA’NA”CAR, VA”NACA’R
and VA”NA’CAR. These 6 ways correspond to the 3! = 6 different
ways of arranging the As. So, 7! overcounts by a factor of 3!. The
answer is thus 7!

3! .
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Example

How many ways are there to rearrange the letters AABBBCCCC?
Using exactly the same reasoning above, there are 9! ways to ar-

range the string, but this overcounts each string by 2!× 3!× 4!. So the
correct count is 9!

2!·3!·4! .
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