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We discuss continuous random variables.

So far, we have been considering random random variables that
only take on discrete values. However, many real-world processes
involve random variables that take continuous values. For example,
in Buffon’s needle experiment, we counted the number of times that
the needle hit a line, which is a discrete random variable. However,
we might have wanted to model the angle of the needle after it falls.
That would be a continuous random variable. Another example has
to do with the Poisson process—we could be interested in the time
that the first request comes in, rather than just counting the number
of server requests.

There is a basic issue with defining continuous random variables—
the definition of what counts as a distribution no longer makes sense.
Recall that we said that a distribution p(x) must satisfy:

• For all x, p(x) ≥ 0.

• ∑x p(x) = 1.

The problem is the second condition. For example, if wanted to
define a random variable that takes on a uniformly random value
between 0 and 1, what should p(x) be for 0 ≤ x ≤ 1? Since the
distribution is uniform, p(x) = p(y) for all x, y in the interval. But
then if we set p(x) = ε > 0, we have

∑
0≤x≤1

p(x) = ∑
0≤x≤1

ε > 1.

So, we cannot set p(x) to be positive to satisfy the definition.
Continuous random variables require a new definition for what a

distribution is. Basically, we need to change sums to integrals.
There are two ways to define a distribution on real numbers. The

first is using its probability density function, or pdf. The pdf is a func-
tion f : R→ R with

• For all x, f (x) ≥ 0.

•
∞∫
−∞

f (x)dx = 1.

Given this description of the distribution, the probability that the
random variable takes a value in a set S is just

p(X ∈ S) =
∫
S

f (x) dx.
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Another way to describe the same distribution is using the cumu-
lative distribution function or cdf. The cdf of a variable is a function
F : R → R with F(a) = p(X ≤ a). If the variable has pdf f , we must
have

F(a) = p(X ≤ a) =
a∫

−∞

f (x) dx.

Sometimes, it is easier to compute the cdf of a distribution than
to compute the pdf. If we have computed the cdf F, we can always
recover the pdf f by setting f (x) = dF(x)

dx to be its derivative.

Example: The uniform distribution

The uniform distribution on numbers between 0 and 1 has the pdf

f (x) =

1 if 0 ≤ x ≤ 1,

0 otherwise.

The cdf is given by

F(a) =
a∫

−∞

f (x) dx =


0 if a ≤ 0,

a if 0 ≤ a ≤ 1,

1 if 1 ≤ a.

There are a few important things to note here. First of all, the pdf
of a continuous variable can actually take on values larger than 1.
For example, the pdf of variable that is a uniformly random number
in between 0 and 1/2 is the function that is 2 in this interval, and 0
everywhere else. However, the cdf actually computes a probability, so
it is always a number in between 0 and 1.

Events, expectation and events

All of the ideas we have discussed discrete random variables
have analogues for continuous random variables as well. For exam-
ple, if we have a continuous random variable X with pdf f and cdf g,
then the probability of an event E is just

p(X ∈ E) =
∫
E

f (x) dx.

The expected value of the random variable is

E [X] =

∞∫
−∞

x · f (x) dx.
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(a) pdf for a uniform number in
between 0 and 1.
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(b) cdf for a uniform number in
between 0 and 1.
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(c) pdf for a uniform number in
between 0 and 1/2.
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(d) cdf for a uniform number in
between 0 and 1/2.

Figure 1: The pdf and cdf of a
uniformly random number.

The variance is

Var [X] =

∞∫
−∞

(x− µ)2 · f (x) dx = E

[
X2
]
−E [X]2 ,

where here µ = E [X] is the expectation of X. The standard deviation
is

σ(X) =
√

Var [X].

Markov’s inequality and Chebyshev’s inequality remain un-
changed for continuous random variables:

Fact 1 (Markov’s inequality). If X is a non-negative continuous random
variable, then

p(X ≥ α) ≤ E [X]

α
.

Fact 2 (Chebyshev’s inequality).

p(|X−E [X] | ≥ α) ≤ Var [X]

α2 .

Just like for discrete variables, linearity of expectation holds, and
Var [aX + b] = a2Var [X]. Similarly, if Y = h(X), then E [Y] =

∞∫
−∞

h(x) f (x) dx.



lectures 17 and 18: continuous random variables 4

0 2 4 6
0

0.5

1

t
(a) pdf, λ = 1/2

0 2 4 6
0

0.5

1

t
(b) cdf, λ = 1/2

0 2 4 6
0

0.5

1

t
(c) pdf, λ = 1

0 2 4 6
0

0.5

1

t
(d) cdf, λ = 1

Figure 2: The pdf and cdf of
the arrival time in the Poisson
process, which are distributed
according to the exponential
distribution with parameter λ.

Example: The uniform distribution

Suppose X is uniformly distributed between 0 and 1, with pdf f and
cdf g as described above. Then the expected value of X is

E [X] =

∞∫
−∞

f (x) dx =

1∫
0

dx = (1/2)x
∣∣∣1
0
= 1/2.

The variance is

Var [X] =

∞∫
−∞

(x− µ)2 f (x) dx

=

1∫
0

(x− 1/2)2 dx

=
1
3
· (x− 1/2)3

∣∣∣1
0

=
(1/8) + (1/8)

3
=

1
12

.

The probability that X ≤ 0.8 is just g(0.8) = 0.8.

Example: The exponential distribution

In the last lecture, we defined the Poisson process, which is a proba-
bilistic process that is useful for modeling the arrivals of requests at a
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server, or the cars going through an intersection at a given time. We
talked about a discrete random variable associated with the process,
namely the number of arrivals in an interval of time of length τ. We
showed that the number of arrivals has the distribution

pλ(k) = e−λτ · (λτ)k

k!
.

Let X denote the first arrival in the Poisson process after time 0.
What are the pdf and cdf of X? The cdf is easier to compute, so let The exponential distribution is basi-

cally the continuous analogue of the
geometric distribution.

us start with that. We need to compute F(t) = p(X ≤ t) = p(0 ≤
X ≤ t) = 1− p(X > t). But we see that p(X > t) is the same as the
probability that there are 0 arrivals in the interval [0, t]. So we have

F(t) = 1− p(X > t) = 1− e−λt.

To recover the pdf of the first arrival time, we can just differentiate
F(t) to get

f (t) =

λe−λt if t ≥ 0,

0 otherwise.

To calculate the expected waiting time, we have

E [X] =

∞∫
−∞

t f (t) dt

=

∞∫
0

λte−λt dt

=

∞∫
0

(−t) · (−λe−λt) dt

= −t · e−λt
∣∣∣∞
0
−

∞∫
0

−e−λt dt integration by parts

= −t · e−λt
∣∣∣∞
0
− e−λt/λ

∣∣∣∞
0

= 1/λ.

Intuitively, if you expect to see λ ar-
rivals in a unit time interval, you
should wait λ time for the first arrival.

The variance turns out to be 1/λ2.
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