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We introduce and motivate the Poisson Distribution.

We have been playing with a number of different distributions in
this class. Here are some of them:

Bernoulli Toss a coin that is heads with probability p. Let X be the
outcome of the coin toss. Then X has a Bernoulli distribution.

Binomial Toss n coins independently, each of which gives heads
with probability p. Let X be the number of heads. Then X has a
binomial distribution.

Geometric Toss an infinite number of coins in sequence, each of
which is heads with probability p. Let X be the number of coin
tosses before you see the first heads. X has a geometric distribu-
tion.

As you can see, we have been obsessed with coins in this course.
That’s mainly because the Bernoulli distribution and its derivatives
are extremely nice and clean to work with. They do seem to give a
good approximation in many real-world applications as well. How-
ever, there are many other kinds of distributions that are better suited
to understanding the world.

The Poisson process is one such extremely natural distribution:

pλ(k) = e−λ · λk

k!
,

for k = 0, 1, 2, . . . .
It is easy to see that this is actually a distribution on the non-

negative integers. Recall the Taylor series expansion:

eλ = 1 + λ + λ2/2! + λ3/3! + . . . .

We can use this expansion to prove:

∞

∑
k=0

pλ(k) = e−λ
∞

∑
k=0

λk

k!
= e−λ · eλ = 1.

The distribution pλ is actually just as natural as the other distribu-
tions we have discussed above. Indeed, it corresponds to the limit of
the Binomial distribution as n→ ∞.
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(a) Binomial with n = 10, p = 1/2.
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(b) Binomial with n = 15, p = 1/3.
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(c) Binomal with n = 25, p = 1/5.
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(d) Poisson with λ = 5.

Figure 1: Three binomial dis-
tributions are shown, each of
which has expected value 5.
The last figure shows the Pois-
son distribution with λ = 5.
Note how as n gets larger and
larger, the Binomial converge to
the Poisson distribution.

To see this, suppose X is the binomial distribution induced by n
coin tosses, each of which is heads with probability p. Let λ = pn be
the expected number of heads. Then we have

p(X = k) =
(

n
k

)
· pk · (1− p)n−k

=
n · (n− 1) . . . (n− k + 1)

k!
·
(

λ

n

)k
·
(

1− λ

n

)n−k
since p = λ/n

=
n
n
· n− 1

n
. . .

n− k + 1
n

· λk

k!
·
(

1− λ

n

)n−k
.

Now, if we hold λ and k constant, and let n→ ∞, we have

n
n
· n− 1

n
. . .

n− k + 1
n

→ 1
(

1− λ

n

)−k
→ 1

(
1− λ

n

)n
→ e−λ, Recall that e = lim n

λ→∞(1− λ/n)n/λ

so we get

p(X = k)→ λk

k!
· e−λ = pλ(k).

So, the Poisson distribution is basically the distribution of the
number of heads when you toss an infinitely many coins and you
expect to see λ heads.
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(b) λ = 40
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Figure 2: The Poisson distribu-
tion, for various choices of λ.
Note that the y axis has a dif-
ferent range in each figure. The
large values of λ actually have
much smaller probabilities.

By construction, if X is distributed according the Poisson distribu-
tion above, then

E [X] = λ,

since the expected number of heads is always λ.
We can also calculate E [X] explicitly:

E [X] =
∞

∑
k=0

pλ(k) · k

=
∞

∑
k=1

pλ(k) · k since the contribution when k = 0 is 0

=
∞

∑
k=1

e−λ · λk · k
k!

= λe−λ ·
∞

∑
k=1

λk−1

(k− 1)!
= λ · e−λ · eλ = λ.

What about Var [X]? If Y was binomial, then we calculated that
Var [Y] = n(p− p2) = np− np2 = λ− pλ. As we take n → ∞ and
hold λ constant we have p→ 0, so we should get

Var [X] = λ.
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We can also calculate it directly:

E

[
X2
]
=

∞

∑
k=0

pλ(k) · k2

=
∞

∑
k=1

pλ(k) · k2 since the contribution when k = 0 is 0

=
∞

∑
k=1

e−λ · λk · k2

k!

= λe−λ ·
∞

∑
k=1

λk−1 · k
(k− 1)!

= λe−λ ·
(

∞

∑
k=1

λk−1 · (k− 1)
(k− 1)!

+
∞

∑
k=1

λk−1

(k− 1)!

)

= λe−λ ·
(

λ ·
∞

∑
k=2

λk−2 · (k− 2)
(k− 1)!

+ eλ

)
the first term of the first sum is 0, and
the second sum is just eλ.

= λe−λ(λeλ + eλ) = λ2 + λ.

So:
Var [X] = E

[
X2
]
−E [X]2 = λ2 + λ− λ2 = λ.

Example: Modeling the Arrival of Traffic

To motivate why the Poisson distribution is so natural, consider the
problem to trying to model the number of cars that pass through a
given traffic intersection in τ hours. How should we model this?

It is very natural to enforce that the distribution should satisfy that
the expected number of cars passing through the intersection should
be proportional to τ. So, let us assume that this expectation is λ · τ,
for some parameter λ. If λ · τ � 1, an approach might be to model
the number of cars passing through as a Bernoulli with probability
λ · τ. Then the expectation is correct, and maybe this makes sense.
The problem is that this doesn’t allow for the possibility that the
number of cars is ever more than 1.

The next idea is to think of breaking up the interval of length τ

into τ/δ pieces of length δ � τ, and think of the number of cars
passing during each smaller interval as a Bernoulli. In order to make
this work, we want the overall expected number of cars to still be λτ,
so the probability of a car passing in each interval of length δ should
be λδ. What happens when we take δ → 0? Then we see that the
distribution on the number of cars in the interval τ behaves exactly
like a Poisson process with probability λ · τ.


