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We continue our discussion of Variance, and talk about using it to
prove our first concentration bound.

In the last lecture, we discussed how to calculate the variance of
a random variable Var [X] = E

[
X2]. We showed that the variance of

the sum of two independent random variables is just the sum of the
variance. Another nice way to calculate the variance is:

Fact 1. Var [X] = E
[
X2]−E [X]2.

Proof. Let µ = E [X]. Then

Var [X] = E

[
(X− µ)2

]
= E

[
X2 + µ2 − 2Xµ

]
= E

[
X2
]
+ µ2 − 2µ E [X] by linearity of expectation

= E

[
X2
]
+ µ2 − 2µ2 = E

[
X2
]
− µ2.

Definition 2. The standard deviation of the random variable X is defined
to be

σ(X) =
√

Var [X].

Example: n coin tosses

Suppose we toss a fair coin n times. What is the variance of the num-
ber of heads?

Let X denote the number of heads. As usual, it is best to represent
X using the indicator random variables for each coin toss being a
heads:

Xi =

1 if i’th toss is heads,

0 otherwise.

Then we have X = X1 + X2 + . . . + Xn. Since X1, . . . , Xn are indepen-
dent, we have

Var [X] = Var [X1] + Var [X2] + . . . + Var [Xn] .

Now we can calculate:

Var [Xi] = E

[
X2

i

]
−E [Xi]

2 .
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First let us calculate E
[
X2

i
]
,

E

[
X2

i

]
= (1/2) · 12 + (1/2) · 0 = 1/2.

E [Xi]
2 = ((1/2) · 1 + (1/2) · 0)2 = (1/2)2 = 1/4,

so we get

Var [Xi] = E

[
X2

i

]
−E [Xi]

2 = 1/2− 1/4 = 1/4.

So, we conclude that

Var [X] = Var [X1] + Var [X2] + . . . + Var [Xn] = n/4.

The standard deviation is

σ(X) =
√

n/2.

The variance gives a powerful way to measure the probability that
a random variable deviates from its expectation by a lot. As we have
seen, E [X] does not tell us anything about how far X can be from its
expectation. However, we do have the following simple inequality:

Fact 3 (Markov’s inequality). If X is a non-negative random variable,
then

p(X ≥ α) ≤ E [X]

α
.

Proof. We can use conditional expectation to express:

E [X] = p(X ≥ α) ·E [X|X ≥ α] + p(X < α) ·E [X|X < α]

≥ p(X ≥ α) ·E [X|X ≥ α]

≥ α · p(X ≥ α),

proving that

p(X ≥ α) ≤ E [X]

α
.

Applying Markov’s inequality to the variance gives us Cheby-
shev’s inequality:

Fact 4 (Chebyshev’s inequality).

p(|X−E [X] | ≥ α) ≤ Var [X]

α2 .

Proof.

p(|X−E [X] | ≥ α) = p((X−E [X])2 ≥ α2)

≤ E
[
(X−E [X])2]

α2 by Markov’s inequality applied to
the non-negative random variable
(X−E [X])2.

=
Var [X]

α2 .
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Let us apply Markov and Chebyshev’s inequality to some common
distributions.

Example: Bernoulli Distribution

The Bernoulli distribution is the distribution of a coin toss that has
a probability p of giving heads. Let X denote the number of heads.
Then we have

E [X] = p,

Var [X] = p− p2.

Markov’s inequality gives

p(X = 1) = p(X ≥ 1) ≤ E [X]

1
= p.

Chebyshev’s inequality gives

p(X = 1) = p(|X− p| ≥ 1− p) ≤ p− p2

(1− p)2 =
p

1− p
.

Neither of these inequalities are very interesting, because it is much
easier to see directly that p(X = 1) = p.

Example: Binomial Distribution

The binomial distribution is the outcome of tossing n independent
coins, each of which gives heads with probability p. Let X be the
number of heads.

Suppose that p < 1/2. We have:

E [X] = pn,

Var [X] = (p− p2)n.

Markov’s inequality gives

p(X ≥ 2pn) ≤ E [X]

2pn
=

pn
2pn

=
1
2

.

Chebyshev’s inequality gives These are much more interesting
inequalities, because it is hard to
calculate p(X ≥ 2pn) directly.p(X ≥ 2pn) = p(|X− np| ≥ pn))

≤ Var [X]

p2n2 =
p(1− p)n

p2n2 =
1− p

pn
.

We see that n gets large, this probability goes to 0.


