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We discuss the conditional expectation and variance.

Given an event E, the conditional expectation is exactly what you
would expect after conditioning:

E [X|E] = ∑
x∈E

p(X = x|E) · x.

Fact 1. If E is an event and X is a random variable, then

E [X] = p(E) ·E [X|E] + p(Ec) ·E [X|Ec] .

Proof.

E [X] = ∑
x

p(X = x) · x

= ∑
x
(p(E) · p(X = x|E) + p(Ec) · p(X = x|Ec)) · x

= p(E)∑
x

p(X = x|E) · x + p(Ec)∑
x

p(X = x|Ec) · x

= p(E) ·E [X|E] + p(Ec) ·E [X|Ec] .

Example

You toss a coin until you see heads. How many coin tosses do you
expect to see?

Let X be the number of coin tosses. Then we see that

E [X] =
∞

∑
i=1

p(X = i) · i =
∞

∑
i=1

(1/2)i · i.

We could calculate this using some identities from calculus.
We have

(1− x)(1 + x + x2 + . . . + xr) = (1− xr+1),

so we can express

1 + x + x2 + . . . + xr =
1− xr+1

1− x
.

If |x| < 1, then as r goes to infinity, we get

1 + x + x2 + . . . =
1

1− x
.
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Now, the expression we care about is

E [X] =
∞

∑
i=1

(1/2)i · i = (1/2)
∞

∑
i=1

(1/2)i−1 · i = x(1+ 2x+ 3x2 + 4x3 + . . . ),

where here x = 1/2. The infinite sum in this expression is exactly the
derivative of

1 + x + x2 + . . . .

So, taking the derivative of (1/(1 − x)), we get that it should be
1/(1− x)2. Plugging this calculation in gives:

E [X] = (1/2) · 1
(1− (1/2))2 = 2.

But there is an easier way to calculate all of this using conditional
expectation. Let E denote the event that the first coin toss is heads.
Then we have

E [X] = p(E)E [X|E] + p(Ec)E [X|Ec] .

Now E [X|E] = 1, since under this event there are no more coin
tosses. Conditioned on Ec, the expected number of heads is exactly 1
more than the expected number of heads for X. So, we get:

E [X] = (1/2) + (1/2)(E [X] + 1),

which gives E [X] = 2.

Variance

As we saw in the earlier examples, a random variable can be
very far from its expectation. One way to measure how far a random
variable is typically from its expectation is to measure its variance.

Suppose X is a random variable with E [X] = 0. Then the variance
of X is

Var [X] = E

[
X2
]

.

When it is large then |X| is typically large and the value of X is
usually far from its expectation. For general X, we define its variance
as

Var [X] = E

[
(X− µ)2

]
,

where here µ = E [X].
The variance of a random variable is always non-negative.
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Example

For example, let X, Y, Z be random variables such that

X =

1000 with probability 1/2,

−1000 with probability 1/2.

Y =

1 with probability n−1
n ,

−(n− 1) with probability 1
n .

Z =
{

0 with probability 1.

Then all have expectation 0. We have

Var [X] = (1/2)(1000)2 + (1/2)(1000)2 = 1000000,

Var [Y] =
n− 1

n
· 12 +

1
n
(n− 1)2 =

n− 1 + (n− 1)2

n
=

n2 − n
n

= n− 1,

Var [Z] = 0.

Fact 2. If X is a random variable, and Y = aX + b, for constants a, b, then
Var [Y] = a2 ·Var [X].

Proof.

Var [Y] = E

[
(Y−E [Y])2

]
= E

[
(aX + b− a E [X]− b)2

]
= E

[
a2(X−E [X])2

]
= a2 ·Var [X] .

This means that we can always shift X to X−E [X] without chang-
ing its variance.

In general, if X, Y are two random variables, then Var [X + Y] is
not the same as Var [X] + Var [Y]. In fact, the variance of X + Y might
even be lower than the variance of either X or Y. For example, if X = −Y, then

Var [X + Y] = 0.
Fact 3. When X and Y are independent, Var [X + Y] = Var [X] + Var [Y].

Proof.

Var [X + Y] = Var [X + Y−E [X]−E [Y]] = Var
[
X′ + Y′

]
,
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where here X′ = X −E [X] and Y′ = Y −E [Y]. Note that Var [X] =

Var [X′] and Var [Y] = Var [Y′]. Then we have

= E

[
(X′ + Y′)2

]
by linearity of expectation

= E

[
X′2 + Y′2 + 2X′Y′

]
= E

[
X′2
]
+ E

[
Y′2
]
+ E

[
2X′Y′

]
by linearity of expectation

= Var [X] + Var [Y] + 2 ·E
[
X′
]
·E
[
Y′
]

since X, Y are independent

= Var [X] + Var [Y] . since E [X′] = 0
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