
Lecture 11: Random Variables, Independence and
Linearity of Expectation
Anup Rao

January 29, 2018

We discuss the use of hashing and pairwise independence.

Random variables X1, . . . , Xn are said to be mutually independent
if for every x1, . . . , xn, we have

p(X1 = x1, X2 = x2, . . . , Xn = xn)

= p(X1 = x1) · p(X2 = x2) . . . p(Xn = xn).

It is possible that the random variables are not independent, even
though every pair of random variables is independent. For example,
suppose X, Y ∈ {0, 1} are uniformly random bits that are indepen-
dent of each other. Set

Z = X + Y mod 2.

Z is not independent of X, Y. However, we see that X, Z are mutually
independent. Similarly, Y, Z are also mutually independent.

Another example: let X ∈ {0, 1}n be a uniformly random string
such that X1 + X2 + . . . + Xn = 0 mod 2. Then X1, . . . , Xn are not
mutually independent. However, every n − 1 of those variables are
mutually independent.

In general, we say that X1, . . . , Xn are k-wise independent if every
k variables are independent.

Hashing

Here is an application of pairwise independence to a data
structures problem. Suppose we have subsets S ⊆ T ⊆ [n]. We would
like to store S and allow membership queries into S. We want to
preprocess and store S so that at runtime, if we get an element i ∈ T,
we can quickly deduce whether i ∈ S or not. For example, imagine that T is the set

of all students at UW, [n] is the set of all
people in the world, and S is the set of
students enrolled in CSE312. We would
like to be able to quickly check whether
a student at UW is enrolled in CSE312

or not.

An obvious way to solve this problem is to just store S as a sorted
list. Then if we want to check whether or not i ∈ S, we can just scan
the list. This takes time proportional to |S|. Can we speed this up?

Another way to solve this problem is to store the indicator vector
of S as a vector in {0, 1}n. Then membership queries can be checked
in constant time. But this requires n bits of space! Do we really need
n bits of space?



lecture 11: random variables, independence and linearity of expectation 2

The idea of hashing is to map each element of the space to a much
smaller set of hashes, in such a way that collisions are unlikely. Then
membership can be checked quickly, and using small space at the
same time. Let h : [n] → [m] be a uniformly random function,
with m � n. Since h is uniformly random, h(1), h(2), . . . , h(n) are
mutually independent and uniformly random in [m].

Now, here is the idea.

1. Pick a random function h : [n]→ [m] as described above.

2. Initialize a bit vector Z ∈ {0, 1}m by setting all coordinates to 0.

3. For every element j ∈ S, set Zh(j) = 1.

To check if i ∈ T belongs to S or not, inspect Zh(i). If Zh(i) = 0, we
conclude that i /∈ S. If Zh(i) = 1, we conclude that i ∈ S.

The algorithm makes an error only if there are distinct i, j such
that i ∈ S, j ∈ T and h(i) = h(j). In other words, an error can happen
only if h is not an injective function on T.

Claim 1. p(h is not injective on T) ≤ (1/m) · (|T|2 )

Proof. Let Ei,j denote the event that h(i) = h(j). Then p(Ei,j) = 1/m.
If E denotes the event that h is not injective on T, then we see that
E =

⋃
i 6=j∈T Ei,j. So

p(E) ≤ ∑
i 6=j∈T

p(Ei,j) = ∑
i 6=j∈T

(1/m) = (1/m) ·
(
|T|
2

)
.

So, as long as we set m � (|T|2 ), the probability that h is not injec-
tive on T is extremely small. This means, we only need to store a bit
vector whose length is about O(|T|2).

All of this is great, but it is not actually practical to sample a uni-
formly random function h : [n] → [m]. Imagine trying to sample a
uniformly random hash for every single possible human name. Luck-
ily, it turns out that it is enough to sample a pairwise independent
hash. We say that the hash function is pairwise independent if for
every i 6= j, h(i) and h(j) are independent. If you look at the proof
of the claim above, you see that we only need the hash function to be
pairwise independent for the analysis to go through.

Moreover, there are several nice constructions that give pairwise
independent functions. For example, let m = p be a prime number.
Let a, b ∈ [p] be independent and uniformly random. Define

h(x) = ax + b mod p.

Then h is a pairwise independent function mapping [n] to [p]. h
can also be computed very quickly. So, setting p � |T|2 be a large



lecture 11: random variables, independence and linearity of expectation 3

enough prime number, we get a hash function that allows us to store
S and quickly answer membership queries.


	Hashing

