Bayes' Classifier

\[H = S^c \]

\(S \): event that email is spam

\(V \): event that email contains "viagra"

\[
p(S|V) = \frac{p(V|S) \cdot p(S)}{p(V)}
\]

\[
= \frac{p(V|S) \cdot p(S)}{p(V|S) \cdot p(S) + p(V|H) \cdot p(H)}
\]

\[
p(M|E) = \frac{p(E|M) \cdot p(M)}{p(E)}
\]

Words in email

\(x_1, x_2, \ldots, x_n \)

\[
p(s|x_1, \ldots, x_n) = \frac{p(x_1, \ldots, x_n|S) \cdot p(S)}{p(x_1, \ldots, x_n|S) \cdot p(S) + p(x_1, \ldots, x_n|H) \cdot p(H)}
\]

Assumption

Words are independent!

\[
p(x_1, \ldots, x_n|S) \cdot p(S)
\]

\[
= p(S) \cdot p(x_1|S) \cdot p(x_2|S) \cdots p(x_n|S)
\]

\[
p(x_1, \ldots, x_n|S) \cdot p(S) + p(x_1, \ldots, x_n|H) \cdot p(H)
\]
Smoothing

Goal: $\forall x \in \mathcal{X}$ for all words x

$p(x|S) > 0$, $p(x|H)$

To estimate

$p(w|S)$: $\frac{\text{# spam emails containing } w}{\text{# spam emails}}$

\Rightarrow smooth

$\Rightarrow \frac{\text{# spam emails with } w + 1}{\text{# spam emails} + 2}$

Words in email

x_1, x_2, \ldots, x_n

$p(s|x_1, \ldots, x_n) = \frac{p(x_1, \ldots, x_n|S) \cdot p(S)}{p(x_1, \ldots, x_n|S) \cdot p(S) + p(x_1, \ldots, x_n|H) \cdot p(H)}$

Assumption

(words are independent!)

$p(x_1, \ldots, x_n|S) \cdot p(S)$

$= p(S) \cdot p(x_1|S) \cdot p(x_2|S) \cdots p(x_n|S)$

\Rightarrow

$p(S) \cdot p(x_1|S) \cdots p(x_n|S)$

$p(S) \cdot p(x_1|S) \cdots p(x_n|S) + p(x_1|H) \cdots p(x_n|H) \cdot p(H)$
Monty Hall Game show

2 doors \rightarrow goat
1 door \rightarrow car

1. Contestant picks a door \Box

2. Host picks a random goat-door among two not picked by contestant

3. Contestant stay or switch.

C_1, C_2, C_3 : events that car is behind \Box, \Box, \Box

H_2 : host picks door \Box

$H_3 = H_2^c$: host picks door \Box

$\overline{H_3}$ happened.

$p(C_1 | H_3)$ vs $p(C_2 | H_3)$

$p(C_2 | H_3) = \frac{p(H_3 | C_2) \cdot p(C_2)}{p(H_3)}$

$p(H_3 | C_2) = 1 \quad p(C_2) = \frac{1}{3}$

$p(H_3) = \frac{1}{2} \quad p(H_2) + p(H_3) = 1$

$p(H_3) = p(H_3 | C_1) \cdot p(C_1) + p(H_3 | C_i^c) \cdot p(C_i^c)$.
\(C_1, C_2, C_3 \): events that car is behind

\(H_2 \): host picks door 2

\(H_3 = H_2^c \): host pick door 3

\(H_3 \) happened.

\[p(C_1 | H_3) \] vs \[p(C_2 | H_3) \]

\[p(C_2 | H_3) = \frac{p(H_3 | C_2) \cdot p(C_2)}{p(H_3)} \]

\[p(H_3 | C_2) = 1 \quad p(C_2) = \frac{1}{3} \]

\[p(H_3) = \frac{1}{2} \quad p(H_2) + p(H_3) = 1 \]

\[p(H_3) = p(H_3 | C_1) \cdot p(C_1) + p(H_3 | C_1^c) \cdot p(C_1^c) \]

\[p(C_2 | H_3) = \frac{1}{\frac{1}{2}} \cdot \left(\frac{2}{3} \right) = \frac{2}{3} \]

\[p(C_1 | H_3) + p(C_2 | H_3) = 1 \quad \Rightarrow \quad p(C_1 | H_3) = \frac{1}{3} \]
Study 1:
Acceptance rates are same.

Study 2:
In every major, acceptance rate for women was lower than for men.

W: event applicant is woman
M: " " " man
A: " " " is admitted

\[P(A|W) = P(A|M) \]

2 majors:
X: event applicant in Computer science
Y: " app in statistics

Study 2:
\[P(A|W,X) < P(A|M,X) \]
\[P(A|W,Y) < P(A|M,Y) \]